Category Archives: Scientific theory

NYC data Science examples

1 The End of Crack and Breakout of Hip-Hop
2 The US economy’s separate tracks for rich and poor

To help people understand my work, here are a couple of examples of data science to discover dramatic recent culture changes in New York City. The work is based on a careful lifelong study of eventful natural change, of all sorts, done by following the stages of growth and decay evident in the natural life cycles of culture change events.

following the stages of growth and decay evident in the natural life-cycles of culture change

My method depends on finding data that shows clear evidence of growth or decay, as those identify natural processes of irreversible organizational development, in the natural successions of change.   Below are samples from two advanced studies of unexpected dramatic societal change, and a drawing of the markers of change I use to suggest what evidence to look for to discover what’s changing.

The two advanced studies are the mysterious 1991 collapse of the great NYC crack culture (1), and second, the mysterious 1970 splitting apart of the US economy into rich and poor sectors on different tracks (2).   Both were simply enormous cultural events that very largely went unnoticed, dramatic “break-outs” of culture change that had been brewing for a long time, and then swiftly changed how we live.   The study of the collapse of the NYC crack culture and many other examples are in the archive of my research from the 80s and 90s called “The physics of happening

It gets easier to discuss these cultural changes once you sense what is being opened up to view is really the stories of our own lives.  These and patterns of change in things we are all talking about anyway, only with data showing the systematic progression of key measurements of them. The basic science for following markers of change, implied by the physics principle of energy conservation (3), implying that lasting change is a process of organizational development.  So the markers suggest places to ask “what’s developing”.

basic science for following markers of organization change, implied by the physics principle of energy conservation

the markers suggesting places to ask “what’s developing”.

1.
The End of Crack and Breakout of Hip-Hop

… three years before the mayor who took credit for it took office. The real main player was the strain on the families of the NYC drug cultures involved. They had become particularly traumatized by it, and the rest of society desperately searching for some way to change too.  Everything people wanted to have work started working all at once, when their kids stopped looking up to the drug lords!   They turned to the emerging Hip-Hop mass culture as an exciting alternative to be part of, a riveting story when well told.

What tipped me off was the “decay curve” shape of the NYS murder rate data shown in the NY Times. The abrupt decay curve shape, rapid at first and decelerating over years, without wiggle, is a very clear indicator of the death of a natural culture, in this case seeming to be from the youth that had once fed it turning away..

2.
The US economy’s separate tracks for rich and poor

… a sudden structural change in how the US economy worked that broke out in 1968-70.  A huge transformation occurred in how Wall Street defined profit, shifting from Wall Street seeing its role as helping businesses create value, to seeing its role as taking profit from business for shareholders.  [note:…the strong appearance is that it actually changed the “polarity” of wealth management, in effect violating all of Asimov’s laws of robotics at once, as the first major use of computers for business to robotically take profits from business for shareholders (and traders)].  That shareholders and everyone else didn’t know maximizing the extraction of wealth from businesses would end up driving businesses to impoverish society… is of course the catch.

The curves here mainly indicate that something enormously big happened.  The US data for median household incomes is “indexed” to US GDP (scaled to equal) at 1970, the time when the whole system behavior change occurred.  GDP represents the whole economy’s income, that as the data also shows, before 1970, growing at the same proportional rates as the median incomes.  It was after 1970 they all then split apart, with the GDP doubling and doubling while the median household incomes fell farther and farther behind.

3. The “Life-cycle Markers” derived from the physics principle of “energy conservation”

…that implies it takes organizational development for energy use to begin or end. It helps make sense of the way regular proportional change (what growth and decay curves show) is so commonly present where lasting change occurs.   Once you begin to ask “what happened” where lasting change takes place, you look for the evidence of organizational changes taking off. and changing directions.

jlh

Scientific Community on Natural Limits

Post event note:

UN meetings on the first year of SDG implementation are over now, were very intense, and in the end quite successful for finding a new way to discuss the neglected issue of natural limits.   The scientific community that understands the connection between our natural limits and economic growth has been totally shut out of the UN discussion for years.   I didn’t get to speak to the main body on that directly, but I finally found a way to talk about the problem, that the SDG’s don’t in any real way count the global impacts of our decisions:

S D   M e t r i c s   L e a v e   M o s t   S o c i e t a l   I m p a c t s   U n c o u n t e d  

It’s to say:

The ISO’s world environmental accounting standards
fail to honor its fiduciary duty to our interests and human right to honest data,
only counting local impacts, leaving all global impacts of financial decisions uncounted and unaccountable.
SD decision makers are the most hurt, kept from knowing most of what they are deciding.

____________

The 17 Goals

It had seemed I would have a chance to speak at the UN, officially representing the long neglected interests  of the scientific community that understands the coupling of the economy and natural limits.  Below is the email I sent a number of scientists and other experts who understanding is not being represented:

Friends,

I found a way for scientists who have long understood natural limits, to get official representation at the UN, in the UN’s community of CSO’s (Civil Society Organizations), as a member of its “Major Groups and Other Stakeholders” (MGoS).    The present work is the review and guidance of the UN’s global Sustainable Development Goals project (SDG’s), and the High Level Political Forum’s (HLPF) oversight of it.   https://sustainabledevelopment.un.org/hlpf

Please circulate widely.  Non-expert members welcome too.   There is no organization at this time, just me seeing an opportunity to have our long neglected interests given official recognition.  I might start a Google Group with the names or something…  Any statement would be in the interests of the group rather than as if representing a group position

The draft text for representing the group’s interest to the UN is is here.

Time was too short for it to get around, and response was slow, except for the two  great ones I really appreciate getting, so I turned off the Google invitation form .   It still seems to be something that community really should find a way to do though!

Jessie

 

A pitch for introducing bigdata “system recognition”

The following is written for circulation in the “data science” research communities, on some advances in scientific methods of system recognition I’d like to share.  It starts with mention of the very nice 9 year old work published by Google on “Detecting Influenza Epidemics using search engine query data”  taken from a letter to that paper’s authors.  Take the reference to be to your own work, though, as it involves system recognition either in life or exposed by streams of incoming data.

empirical evidence of systemization

I expect a lot of new work has followed your seminal paper on detecting epidemics as natural systems.

But are there people starting to focus on more general “system recognition”,
studying “shapes of data” that expose “design patterns” for the systems producing it?

Any individual “epidemic” is a bit like a fire running it’s course, and sometimes innovating the way it spreads.   That change in focus directs attention to how epidemics operate as emergent growth systems, with sometimes shifting designs that may be important and discoverable, if you ask the right questions.  You sometimes hear doctors talking about them that way.   In most fields there may be no one thinking like doctors, even though in a changing world it really would apply to any kind of naturally changing system.

Turning the focus to the systems helps one discover transformations taking place, exposed in data of all sorts.  One technique allows data curves to be made differentiable, without distortion.  That lets you display evidence of underlying systems perhaps entering periods of convergence, divergence or oscillation, for example, prompting questions about what evidence would confirm it or hint at how and why.

Focusing on “the system” uses “data” as a “proxy” for the systems producing it, like using a differentiable “data equation” to closely examine a system’s natural behavior.  In the past we would have substituted a statistic or an equation instead.    By prompting better questions that way it makes data more meaningful, whether you find answers right away or not.   I think over the years I’ve made quite a lot of progress, with new methods and recognized data signatures for recurrent patterns, and would like to find how to share it with IT, and collaborate on some research.

Where it came from is very briefly summarized with a few links below.  Another quick overview is in 16 recent Tweets that got a lot of attention this past weekend, collected as an overview of concepts for reading living systems with bigdata.

I hope to find research groups I can contribute to.  If you’re interested you might look at my consulting resume too.  If you have questions and want to talk by phone or Skype please just email a suggested time.

Thanks for listening!    –     Jessie Henshaw

___________________________________________

fyi – 350 words Continue reading A pitch for introducing bigdata “system recognition”

16 Tweets on Reading #BigData for Life

Working with BigData, especially learning how to read the designs and behavioral patterns of the earth’s natural systems, its living cultures of all kinds, and to sense our roles in them, opens up a tremendous new field of understanding.  It of course also opens up very new kinds of perspectives to puzzle over, both offering to show us new paths and making it clear various reasons to question what we’ve been doing.  

This series of Tweets came out in a group somehow, mostly in this sequence today, seeming to build a framework of interconnecting points, like tent stakes and poles maybe, a design for hosting ways to do it.    ……Jessie

  1. What we talk about becomes society’s reality, so we can read #BigData for what’s happening #following_all_cultures and #resources_on_earth.
  2. And what may matter most in #BigData is going from reading abstract patterns to reading naturally occurring ones. http://synapse9.com/jlhCRes.pdf
  3. Then add the magic of learning to read the patterns #BigData reveals, as exposing the designs of the natural systems producing it.
  4. Reading #BigData for natural patterns shows you even the best data doesn’t show what systems are producing it. 
  5. No degree in #data_science will neglect pattern recognition for understanding the natural systems creating the data.http://www.synapse9.com/pub/2015_PURPLSOC-JLHfinalpub.pdf
  6. If our world #economy is causing trouble for the #earth, why do we think it helps to speed it up? #Get_real_people!

    Escher
  7. Are @google, @IBM or other #BigData #research teams learning how to read design patterns of natural systems?? http://synapse9.com/jlhCRes.pdf
  8. To start reading natural systems in #bigdata look for cultures made individually, clustering or growing from seeds.

    from PURPLSOC 2016 http://www.synapse9.com/pub/2015_PURPLSOC-JLHfinalpub.pdf
  9. Then follow recognizing nature’s cultures with learning from them, going back and forth between models

    from PURPLSOC 2016 http://www.synapse9.com/pub/2015_PURPLSOC-JLHfinalpub.pdf
  10. When reading #bigdata for behaviors of cultures also note contradictions in the news, like #jobs_going_to_Mexico and #refugees_escaping_too.
  11. #BigData exposes surprising whole system views too, #professionals managing systems of growing inequity, disruptive change and impacts too.
  12. #BigData reveals living cultures: business, economic, social, biological or ecological, etc. all either: homeless, home seeking or enjoying.
  13. As you see their forms you realize two things:1) our world is very #alive and 2) most #bigdata is too “big”, making you look for other views
  14. To read #bigdata as views of shifting cultures, alone or together, pushes a #whole_system_view for units of measure. https://synapse9.com/signals/2014/02/26/whats-scope-4-and-why-all-the-tiers/
  15. A #whole_system_view, like #studying_the_camera not what’s in its view, is how to start seeing ourselves in the data!http://www.synapse9.com/jlhpub.htm#ns
  16. Sixteen Tweets on reading our world in #BigData, it’s many moving parts, units of measure & big recognitions required.

ed note: One tweet, that became #11, was rephrased and put in a more logical location a few hours after the first posting.

jlh

at PURPLSOC, then at PLoP: Pattern Language for Object-Oriented Science

…. The distinct possibility is that, for the first time:

Science might soon be able to study all the objects of nature, in their innate form
not just the models we make based on what data is available…

______________________

In-depth Pattern Language Research
Guiding patterns of naturally occurring design”

1) For PURPLSOC 2015: on “Elements”  (final for publication)
2) For PLoP 2015: on “Mining living quality” (meeting draft)

                                             ______________________

To recognize

  • Individual organizations,  Complex natural designs,  Emergent forms of naturally occurring design,
  • Evolving organization & behavior of complex whole systems, 
  • Discovering more and more of the hidden interior designs of lively whole systems…

One way of  introducing the “what” and “how” comes from a “pattern language approach” to the science of “naturally occurring systems”, presented in a paper for PURPLSOC:

Pattern Language becoming a general language of object oriented thinking and design in all fields.

Guiding Patterns of Naturally Occurring Design: Elements

that I presented at the July 3-5 PURPLSOC pattern language research meeting in Krems Austria.  It was in a group of papers on pattern language as a general science; with papers by Helene Finidori, Helmut Leitner, Takashi Iba Et. All.Christian Aspalter & Reinhard Bauer. (links to follow)

As an approach to working with natural systems “Guiding Patterns of Naturally Occurring Design: Elements” seems unprecedented in using a fully scientific method for focusing on the “objects of nature”, using a pattern language approach to identify working complex relationships of natural designs, in their natural contexts, with nothing “held equal” or represented with models, a practical way to relate to the “things themselves”, as “known unknowns”.

The key is not to avoid data and models.  It’s not to rely to heavily on them.   It’s to just never use them to represent natural systems, but only to help you discover why naturally occurring systems and their complex designs are of real interest, and doing things quite different from theory.   It turns out that Christopher Alexander’s pattern language, as a structured language for discussing holistic solutions, as designs for recurrent problems, has now evolved to let it jump from one profession to another.   So, if the branches remain connected to the root… it seems to make a good foundation for building a new language of science, one that doesn’t replace nature with the abstractions of boundless theory.

The paper is a “sampler” of explorations of the topic, including an advanced “starter kit” of methods, terminology and examples, for how to use the patterns of natural design to guide efforts at intentional design and integrate with our world of natural systems.   It introduces a way of recognizing natural designs as ‘objects’ in nature, with their own individual boundaries, allowing separate discussion about what goes on inside and outside, and using pattern language (not abstract models) to make verifiable sense of it.  Identifying a boundary is what permits considering what goes in and out, and open up the use a traditional use of terms of physics and economics, for understanding the thermodynamics and the coupling between energy budgets and financial budgets, etc. for natural systems.   Based on that, it would appear to make a true “object oriented science” a practical possibility.

The original paper introducing this from a traditional biophysical scientific point of view, as “Whole Systems Energy Assessment” (5).   That paper can perhaps now be understood if interpreted from a pattern language viewpoint, as showing that shares of GDP measure shares of global impacts of delivering GDP…  The economic system does appear to work as a whole, and the effort to validate that seems to successfully result in a far more accurate, and far more actionable,  measure the impacts of our choices than efforts to directly trace economic impacts can produce.

For the translation of these and related natural system principles to the language of Alexander’s “pattern language” for defining “object oriented” principles of holistic design see the 2015 “Guiding patterns of naturally occurring design” papers  for PURPLSOC (Pursuit of Pattern Language for Societal Change) (Jul 5 2015) (1) and PLoP  (Pattern Language of Programming)(Oct 23 2015) (2) and related slides and supplementary materials (3).   Also in the directory is a YouTube video link to the first 15 minutes of the slide narration, for the July 5 presentation of ‘Elements’, salvaged from a cell phone recording (4).

“Guiding patterns of naturally occurring design”

1) For PURPLSOC 2015: “Elements”  (final for publication)
2) For PLoP 2015: “Mining living quality” (final for publication)
3) Related materials: Resource directory 
4) 20 min. YouTube video excerpt of the July 5 talk –
5) “Whole Systems Energy Assessment (SEA)…” part of the physical systems science being translated into PL 

___________________

Need to update & add notes and discussion on both conferences….

It was really exciting to be part of, and to watch this new way of thinking emerge, PL as a whole system language for “designs of services” to balance and support
the traditional view of  science as a whole system language for “defined controls

JLH  11/5/15

Object Oriented Science, An Emerging Method?

 

The traditional scientific method doesn’t fit our new information world very well, with the rapid emergence of so many new forms of knowledge communities, computational science and commerce, seeming to take over.  They are also being built on a foundation of science with major problems unsolved,  like an understanding of how complex systems emerge and become unstable.  The Edge asked What Scientific Idea Is Ready For Retirement?, and got 174 responses, one of which was Melanie Swan’s answer: “The Scientific Method”.   She points persuasively to the differences between the emerging computational approaches to knowledge and the traditional practices of science, and hopes a “multiplicity of future science methods can pull us into a new era of enlightenment just as surely as the traditional scientific method pulled us into modernity.”  

There’s a flaw in that, though I generally agree with the hope.  Science is still unable to study nature except in abstraction, representing nature as a theory of deterministic calculations.  It’s been unable to use them to study 1) our own or nature’s great creativity, or 2) any individual thing or event, in its own natural form.  It matters because our old habits of multiplying new forms until they caused trouble is now the foundation on which we’re adding an uncontrolled “Cambrian explosion” of new forms of computational (and often disruptive) knowledge. We also appear to be trusting the future of civilization to them, even as the radiation of old forms further depletes and disrupts the natural world.   It’s seems we’re “missing something”.

So, my counter proposal is to open the eyes of science to the study individual natural systems as subjects, not just as abstractions, but to learn directly from them, to create an “object oriented science”.  My years of work on that, creating a form of physics for studying individual natural systems, works by raising particularly good questions.   For example, all natural systems that develop from a common origin as individuals are found to face a common pattern of life challenges, in part:

“getting started”, “building internal relationships”, “establishing external relationships”, “fitting in” 

There are reasons to worry when the foundation for a radiation of new sciences is an “old science” for radiating new forms that make us quite unable to “fit in” on the earth.   It makes it likely that the new forms of knowledge instead of correcting that, actually contain the same flaw as the old one.   I think a very big part of that comes from science relying on representing nature with equations, that have radically different properties from the subjects that are meant to represent.  

 

The Scientific Method can be expanded to include a General Study of Patterns of Natural Design. Imagine learning cycles like these with energy added to each step ever faster, by %’s.

A counter proposal…

[first posted to IEET article] Certainly the recent discovery that “the world is complicated” (and both people and nature unusually *inventive*) does expose a deep flaw in the idea that nature follows simple scientific rules and models.  That seemed plausible only because some of the simple rules of physics are also so amazingly reliable.   Those still exist, and others are to be found most likely, but the question is: “What then do we think of them?”

I think we probably should not throw out the scientific method… particularly just because we’ve been misusing it.  The common flaw in our use of science as I see it, and studied since the 1970’s actually, is its “misrepresentation problem”.   The world is not a model, and we’ve been treating it that way.

The world is not made of numbers, not made of quantitative relationships.   It’s made of organizations of separate things, often found in “improper sets” with the parts of one thing also often taking independent part in others too.   It makes things in nature *highly individualistic*, and held together by some kind of “organizational glue” we’ve hardly begun to study.    That presents not only a wonderfully interesting “mismatch in VARIETY”, but also several wonderfully interesting “mismatches in KIND” as well.   It may not be ‘neat’ but it’s very ‘lifelike’, and opens all sorts of new doors!

So what I think we need to retire is not so much “science” as “the representation of scientific models as nature”.  The article points to a number of the big discrepancies that have become too big to ignore, but where does that take us??   One place it takes us back to the age old “million dollar question” of how science is to refer to nature at all.  What is it we CAN define that DOES NOT misrepresent what we are studying??    I think a quite simple place to start (and obvious solution once you recover from the shock, I guess) it to treat models not AS nature, but AS “our limits of measurable uncertainty about nature”.  Yes, Popper and Bohr with turn in their graves… but models understood as representing upper and lower bounds within which we expect nature to operate, independently, will also be found to be much more useful.

If you actually look closely at natural behaviors you readily see that, that the paths nature takes are always individualized, and we can understand them much better having some information from past events to suggest what to expect.   It gives you a straight and clear view of the all-important “discrepancies”.   To make use of relieving science of its century (or more) of seriously false thinking, about nature being theory, what you then need are ways for science to refer to nature as “individual phenomena & organizations” to identify the stuff of nature that science studies.   In our century or more of trusting abstraction by itself, that’s what I think science has been missing, having a natural object of study.

So, in a fairly direct way I’m calling for an “object oriented science” to correspond to the “object oriented programming” that has become such a big help for giving order to computer coding and the web.   My main two tools for that are what I call a “dual paradigm” view (alternating between attention to ‘theory’ and ‘things’), and a “pattern language” view (the emerging scientific method of describing natural organization based on Christopher Alexander’s work).

Alexander’s pattern language is evolving to become a versatile general method for working with ‘recurrent patterns of design’ as ‘whole sets of working relationships’ found in ‘problems’, ‘solutions’ & ‘environments’.   My new work describing how these fit together is being presented at the PURPLSOC and PLoP meetings this year, presents a broad picture of the fundamentals, and very worth using to begin the process of recognizing natural design as a working environment.   If interested, do searchs for “dual paradigm”, “pattern language” & “Christopher Alexander” both on the web and in this journal.

 

A nice way to Link Math & Nature

A pattern language nugget, prompted by a  tweet about a World Mysteries Blog post onNature, Fibonacci Numbers and the Golden Ratio”:

The mysterious geometry of Nautilus Shells

Tweet by Brittney Wagner  :

Who liked my Tweeted replies @shoudaknown

  • Nature seems to wander near the path the equation idealizes,
    within a tolerance for finding the living systems’s continuity
    .

  • I think it takes a “pattern language” to discuss designs that develop
    by accumulation from a seed. 

_________________

jlh

So What’s Pattern Language? Mining design patterns from nature.

This is a good introductory description, excerpted from an email, w/ a little edit.  The abstract and link are for a paper on “Guiding Patterns of Natural Design:Mining Living Quality” for an upcoming Pattern Language of Programming conference.  

Alexander’s 15 Principle Elements of Wholeness – adaptation by TKWA archt.

Oh, it’s sort of magic..

the hope of course:

is that this emergence of a sound new way to communicate “wholeness in design”
leads to the world ‘transformation to living design’ everyone is so eagerly awaiting…

Pattern language is a new way of communicating design concepts, created by Christopher Alexander, an architect whose ideas came out of the same 60’s/70’s architecture community as mine did, only starting a decade earlier, and he became a wonderful architectural design teacher.    Anyway, his idea for how to ‘encode’ principles of ‘wholeness’ for architectural design elements was fairly successful, resulting in a series of books beginning with “A Pattern Language” in 1977, and experiments in urban design as recorded in “A New Theory of Urban Design” 1987, and in attracting a significant following.Then his methodology for defining ‘design patterns‘ did the magical thing… of being picked up and translated for use in other fields, a real technology transfer, actually representing the encoding of a set of rather ancient and wonderful architectural design principles, for other uses, i.e. “real magic“!  Where it had an amazing impact was on computer programming, becoming the basis of “object oriented design“, as a way of letting programmers communicate and understand their own design objectives, for both the wholes and parts of their programs.   Till the late 80’s when this new approach to defining design purposes took hold, programmers really had no good way to define the ‘parts‘ of computer programs, or how they needed to work together to make a ‘whole‘.

So having a way to define “working units of design” seems to me at least to be a big part of why modern programming became so successful, like maybe the other real secret behind the communication power of the internet other than micro-chips.  Pattern language lets programmers break computer programs into intelligible workable parts, representing real whole purposes and intentions.   It was Alexander’s loving way of describing the pieces of designs that did that, understanding and portraying design as a search for “living quality“.   And it caught on.  It provides a model for describing

  1. versatile solutions for common problems
  2. as a balance of the forces they resolve

Of course, one of the “forces” is whether we are creating a “living world” or an “inhuman world“, and whether the designs we make can become at home in our environment, to bring us and the earth living quality, or not.  That was the issue he was obsessed with from the start.  So, like I said, a sign of magic.

What’s more of course, is that his method of defining “design patterns” and my pattern science for understanding “natural systems” are awfully close cousins.  You might say they’re much the same thing in several ways, except his focus was on the patterns of wholeness for purposeful design and my focus was on patterns of wholeness in naturally occurring designs.  His “search model” for design patterns was “living quality” and mine was for “what makes life lively”, asked as a physicist who happened to have an education in design too.    So when I was introduced to his work as it had later matured (I really wasn’t “in the loop” or didn’t “get it” before) and I saw how it was being used by non-architects, I finally recognized the connection and now have lots to do!   It’s such a pleasure.

The work is to begin translating between the pattern language I developed for myself for naturally occurring designs, and the one that is becoming the common approach of many professions and communities based on Alexander’s approach, and do what I can to contribute to adding to the versatility of that common approach. Continue reading So What’s Pattern Language? Mining design patterns from nature.

Natural Pattern Languages

key organizational elements for the working relationships of complex systems
ideas of complex relationships that fit the reality

We care because of the new bridge it creates between human ideas and the working organization of complex working systems we make, use and need to respond to of all kinds, an emerging broad advance in understanding complex system organization design.  The idea of pattern language, invented by Christopher Alexander for architectural design in the 70’s, actually started blossoming some time ago, it a most surprising place, in the creation of complex design concepts for computer programming known as “object oriented design”.

As it continues to expand and mature it is becoming a wonderfully versatile method for sharing and recording expert understandings of “how relationships work”, with application to almost any fields.   It became the basis of modern computer programming, as “object oriented design“, with each object fulfilling a “pattern of relationships” that connects with others.   For me… its a language I can begin to use to translate my research on natural system designs into, into “JPL” (aka Jessie’s Pattern Language), for subjects such as how natural systems transition from “type-r” to “type-K” behaviors (a subject underlying much of the discussion on RNS of complex system successions,life stages and cycles,”dual paradigm views”, “organizational stage models”, as observable patterns of organized change in relationships).

The reason it works for “object oriented” programming and “natural systems science” and in other areas too, appear to be the same.   Pattern languages let people use their considerable natural understanding of complex relationships, like “home” “friends” “communication” “trust” “patience” etc. to open our eyes to similarly complex working relationships and meanings of complex systems elsewhere too, as “designs”.  The standard “design pattern” of pattern languages connects human relationship concepts to working organizational relationships of behavioral systems  of ANY kind.  That seems to be why the design model that Alexander invented turns out to be so adaptable to our needs in our now overwhelmingly complex new world…!   ;-)   I can see it readily becoming applied to breaking down the silos of separation between knowledge disciplines, too, the so called “blind men and the elephant problem”, something just completely unimaginable in reality today.

Pattern Languages are for

1. identifying key organizational elements in systems of complex relationships, found in nature or in design practice,

2. communicating design elements for complexly organized systems or illuminating them in existing natural or manmade ones.

3. using the design pattern to refer back to the original natural forms and contexts from which it originated or is used to represent.

Two natural system design patterns, (for example):

Moving with the Flow

Sometimes you watch the people, sometimes their flows.   The flows are roles in larger scale systems of group motion, forming as people avoid interference, but can confine them till they find an opening too.   Markets flows form paths and break from them as new paths are found, often flocking in chase of a wave of anticipation, or uncertainty moving leaderless floods.   Those are puzzling, since there may be no news the contagious change in direction, but systemic change generally usually has a real cause.    Flocks of birds appear to do it just for fun though.

 

 

Alternating roles that Fit

Both natural and human designed complex  organizations have independent parts that create emergent properties by fitting multiple roles.  Day and night, male and female, work and relaxation, pencil and paper, cup and liquid, all the amazing polarities that produce reliable results because of how they fit their multiple roles, quite unlike any set of fixed rules could ever do.  The trick is only physical parts and their relationships can do that, and a pattern language those relationships provide a way to develop concepts for understanding the working parts.

 

 

There are many types of Natural Pattern Languages, generally depending on the organizational medium (material and environment)

  • Social organization pattern languages
  • Natural system pattern languages
  • Architectural and Urban design pattern languages
  • Cultural pattern languages
  • Abstract Scientific pattern languages
  • Educational pattern languages
  • Computer knowledge design pattern languages
  • Commons & community design pattern languages
  • Economic pattern languages
  • Movie making pattern languages
  • Organizing pattern languages
  • … etc.

 

There are three uses of the term “pattern language”,

1. As the collection of design elements and patterns used to design or describe working complex systems

2. As an the organizational language of an individual design project describing its working relationships as a whole

3. As a property of an individual complex system, consisting of the working relationships between its parts and its environment, that might be view from various perspectives to recognize different elements.

 So they’re simple conceptual models designed as versatile tools for engaging our minds with the actual working organization and relationships of natural and designed complexly organized parts of our world. So they come in those two basic forms, as Design Patterns one uses to guide the implementation of some plan or as Natural Patterns used to help people understand how designs can fit in with natural organizations.

 

Pattern Language sites

_____________________

jlh

“Dual paradigm view” Can ecosystems be stable?

Reposting a November 25, 2014 at 4:46 pm comment to Quanta on the Tracy-Widom New Universal Law article

This is a simple way to demonstrate the “dual paradigm view” as a bridge between the abstract complex systems theory and direct study of individual complex systems, to advance our understanding to of the mysterious phenomenon of “emergence”.  The article suggested that as statistical systems ecologies generally could never be structurally stable, but did not compare that to systems that rely of “accumulative organizational design” particularly those with “learning parts” as ecosystems systems so often to have rather than “correlated random variables”.   The moderator clearly liked this better than my first response not published.  

The “dual paradigm view” addresses the dilemma of complexity science that computer models are fine for theory, but don’t really let you study nature.  That’s what a way to connect mathematical systems theory with individual systems study addresses.   Much of my work of the past 35 years has been on that subject, now recently raised by David Pines’ in a founder’s article for SFRI Emergence: A unifying theme for 21st century science, saying that physics and complex systems science now need a way to study the physical phenomenon of emergence and actual complex systems to progress.   My reply to his article  Can Physics Study Behavior not Theory, was first posted on Medium.

It’s interesting that with such a number of cross connecting areas of physics being discussed, the ultimate finding technically didn’t answer the initial question posed. That was Robert May’s “question about whether a complex ecosystem can ever be stable, or whether interactions between species inevitably lead some to wipe out others”.

The mathematical analysis of that question and others was limited to “kinds of random growth” and “systems of correlated random variables”. There are also lots of non-randomly behaving systems too is worth considering, and may have been overlooked in answering the basic question. The variety of organizational growth systems that are familiar everywhere in nature display many kinds of growth curves and outcomes, often having an overall appearance of being 1) quite lopsided, 2) quite symmetric, or 3) reaching extended stable states.

note: How the meaning of probability distribution curve shapes (as discussed in the article) differs from the meaning of these individual development curve shapes was skipped in this short comment on the article.  Please do bring it up of course if needed.   The question posed was about the development of individual ecosystems, and their potential structural stability.

 Generic common curve shapes
for the development of organizational systems.

We probably know of lots familiar examples of these from personal experience, where the systems involved are going through progressive organizational change during their periods of acceleration or deceleration. Reversals in curvature don’t always reflect systemic changes in direction for organizational development, but often do though (shown as gaps in the diagram for raising those questions).

The one looking like a TW distribution curve is familiar to all economics and other matters, as a “meteoric rise” followed by “immediate decline”, like many a seemingly fine business plans might experience. The quite unusual thing is this same shape turns up in Gamma Ray burst records too (see image of BATSE 551 #1 below). It raises the question of whether that system (presumably of radiation from black hole collapse) reflects the organizational stages of a system that experiences a “blows out” (like some of our best business plans do) or that of a statistical distribution for correlated variables, or something else?

In any case, just asking that raises the possibility of a bridge between TW correlations and the fates of natural system organization designs, and perhaps a need to consider whether the other kinds of system are available to change the outcome for May’s ecosystems, depending on their design.

Gamma Ray Burst “BATSE 551 #1”  – Raw data dynamically smoothed.

( reposted from the Pattern Language Debategraph

________________
jlh