Category Archives: Pattern Language

The Image of the Commons… as Fulfillment

Creating a Commons takes thought leadership,
and
Thought Leadership takes midcourse corrections

One thing “thought leaders” need to be aware of is that “leading” always requires mid-course corrections.    Any start-up organization that sticks with growth as its plan and doesn’t switch to a goal for fulfillment has a default plan for destabilizing excesses in what it does, just for not having a goal that is attainable.    The two strategies are both essential but involve different leadership, for a shift from building internal to external relationships!

The natural strategy for building organizations starts with establishing self-identity and expansion by using its resources for capturing more resources.  That serves to grow its internal organization.  If successful it needs to be followed by a change to defining its independence and fulfilling roles in the new environment it finds itself in.  Having defined itself first, is then turns to setting out its own niche within and in harmony with communities of others, having made its identity first to then make its home.

Today the need is for leadership in a world that as a whole acts as if fully committed to destabilizing excess, clearly lacking even the language to talk about anything else.  Changing that seems like the first step then, toward our eventually being able to conceive of and bring about our own fulfillment.

_____________

The Initial Image of the Commons

A vital hive of activity, a self-sufficient family or network structure, in which every part connects directly with every other, an internal world of complementary roles for an economy of cooperation,
a thriving whole and sum greater than the parts.

The image of the Commons – art by Jack Deocyzk

____________

The More General Pattern of the Commons

Each silo of culture is the home for

a different way of living,
a hive of commune-ication 
a self-identit
pulsing with life,

none of which are nearly as alone in the universe and their internal images of completeness make it seem.

The pattern of the commons

________________

jlh

Natural Pattern Languages

key organizational elements for the working relationships of complex systems
ideas of complex relationships that fit the reality

We care because of the new bridge it creates between human ideas and the working organization of complex working systems we make, use and need to respond to of all kinds, an emerging broad advance in understanding complex system organization design.  The idea of pattern language, invented by Christopher Alexander for architectural design in the 70’s, actually started blossoming some time ago, it a most surprising place, in the creation of complex design concepts for computer programming known as “object oriented design”.

As it continues to expand and mature it is becoming a wonderfully versatile method for sharing and recording expert understandings of “how relationships work”, with application to almost any fields.   It became the basis of modern computer programming, as “object oriented design“, with each object fulfilling a “pattern of relationships” that connects with others.   For me… its a language I can begin to use to translate my research on natural system designs into, into “JPL” (aka Jessie’s Pattern Language), for subjects such as how natural systems transition from “type-r” to “type-K” behaviors (a subject underlying much of the discussion on RNS of complex system successions,life stages and cycles,”dual paradigm views”, “organizational stage models”, as observable patterns of organized change in relationships).

The reason it works for “object oriented” programming and “natural systems science” and in other areas too, appear to be the same.   Pattern languages let people use their considerable natural understanding of complex relationships, like “home” “friends” “communication” “trust” “patience” etc. to open our eyes to similarly complex working relationships and meanings of complex systems elsewhere too, as “designs”.  The standard “design pattern” of pattern languages connects human relationship concepts to working organizational relationships of behavioral systems  of ANY kind.  That seems to be why the design model that Alexander invented turns out to be so adaptable to our needs in our now overwhelmingly complex new world…!   ;-)   I can see it readily becoming applied to breaking down the silos of separation between knowledge disciplines, too, the so called “blind men and the elephant problem”, something just completely unimaginable in reality today.

Pattern Languages are for

1. identifying key organizational elements in systems of complex relationships, found in nature or in design practice,

2. communicating design elements for complexly organized systems or illuminating them in existing natural or manmade ones.

3. using the design pattern to refer back to the original natural forms and contexts from which it originated or is used to represent.

Two natural system design patterns, (for example):

Moving with the Flow

Sometimes you watch the people, sometimes their flows.   The flows are roles in larger scale systems of group motion, forming as people avoid interference, but can confine them till they find an opening too.   Markets flows form paths and break from them as new paths are found, often flocking in chase of a wave of anticipation, or uncertainty moving leaderless floods.   Those are puzzling, since there may be no news the contagious change in direction, but systemic change generally usually has a real cause.    Flocks of birds appear to do it just for fun though.

 

 

Alternating roles that Fit

Both natural and human designed complex  organizations have independent parts that create emergent properties by fitting multiple roles.  Day and night, male and female, work and relaxation, pencil and paper, cup and liquid, all the amazing polarities that produce reliable results because of how they fit their multiple roles, quite unlike any set of fixed rules could ever do.  The trick is only physical parts and their relationships can do that, and a pattern language those relationships provide a way to develop concepts for understanding the working parts.

 

 

There are many types of Natural Pattern Languages, generally depending on the organizational medium (material and environment)

  • Social organization pattern languages
  • Natural system pattern languages
  • Architectural and Urban design pattern languages
  • Cultural pattern languages
  • Abstract Scientific pattern languages
  • Educational pattern languages
  • Computer knowledge design pattern languages
  • Commons & community design pattern languages
  • Economic pattern languages
  • Movie making pattern languages
  • Organizing pattern languages
  • … etc.

 

There are three uses of the term “pattern language”,

1. As the collection of design elements and patterns used to design or describe working complex systems

2. As an the organizational language of an individual design project describing its working relationships as a whole

3. As a property of an individual complex system, consisting of the working relationships between its parts and its environment, that might be view from various perspectives to recognize different elements.

 So they’re simple conceptual models designed as versatile tools for engaging our minds with the actual working organization and relationships of natural and designed complexly organized parts of our world. So they come in those two basic forms, as Design Patterns one uses to guide the implementation of some plan or as Natural Patterns used to help people understand how designs can fit in with natural organizations.

 

Pattern Language sites

_____________________

jlh

“Dual paradigm view” Can ecosystems be stable?

Reposting a November 25, 2014 at 4:46 pm comment to Quanta on the Tracy-Widom New Universal Law article

This is a simple way to demonstrate the “dual paradigm view” as a bridge between the abstract complex systems theory and direct study of individual complex systems, to advance our understanding to of the mysterious phenomenon of “emergence”.  The article suggested that as statistical systems ecologies generally could never be structurally stable, but did not compare that to systems that rely of “accumulative organizational design” particularly those with “learning parts” as ecosystems systems so often to have rather than “correlated random variables”.   The moderator clearly liked this better than my first response not published.  

The “dual paradigm view” addresses the dilemma of complexity science that computer models are fine for theory, but don’t really let you study nature.  That’s what a way to connect mathematical systems theory with individual systems study addresses.   Much of my work of the past 35 years has been on that subject, now recently raised by David Pines’ in a founder’s article for SFRI Emergence: A unifying theme for 21st century science, saying that physics and complex systems science now need a way to study the physical phenomenon of emergence and actual complex systems to progress.   My reply to his article  Can Physics Study Behavior not Theory, was first posted on Medium.

It’s interesting that with such a number of cross connecting areas of physics being discussed, the ultimate finding technically didn’t answer the initial question posed. That was Robert May’s “question about whether a complex ecosystem can ever be stable, or whether interactions between species inevitably lead some to wipe out others”.

The mathematical analysis of that question and others was limited to “kinds of random growth” and “systems of correlated random variables”. There are also lots of non-randomly behaving systems too is worth considering, and may have been overlooked in answering the basic question. The variety of organizational growth systems that are familiar everywhere in nature display many kinds of growth curves and outcomes, often having an overall appearance of being 1) quite lopsided, 2) quite symmetric, or 3) reaching extended stable states.

note: How the meaning of probability distribution curve shapes (as discussed in the article) differs from the meaning of these individual development curve shapes was skipped in this short comment on the article.  Please do bring it up of course if needed.   The question posed was about the development of individual ecosystems, and their potential structural stability.

 Generic common curve shapes
for the development of organizational systems.

We probably know of lots familiar examples of these from personal experience, where the systems involved are going through progressive organizational change during their periods of acceleration or deceleration. Reversals in curvature don’t always reflect systemic changes in direction for organizational development, but often do though (shown as gaps in the diagram for raising those questions).

The one looking like a TW distribution curve is familiar to all economics and other matters, as a “meteoric rise” followed by “immediate decline”, like many a seemingly fine business plans might experience. The quite unusual thing is this same shape turns up in Gamma Ray burst records too (see image of BATSE 551 #1 below). It raises the question of whether that system (presumably of radiation from black hole collapse) reflects the organizational stages of a system that experiences a “blows out” (like some of our best business plans do) or that of a statistical distribution for correlated variables, or something else?

In any case, just asking that raises the possibility of a bridge between TW correlations and the fates of natural system organization designs, and perhaps a need to consider whether the other kinds of system are available to change the outcome for May’s ecosystems, depending on their design.

Gamma Ray Burst “BATSE 551 #1”  – Raw data dynamically smoothed.

( reposted from the Pattern Language Debategraph

________________
jlh

Can science learn to read “pattern language”…?

This post is a section of my report titled “Approaching 30 days from the 40th Anniversary” on attending the quite exciting 2012 40th Anniversary meeting on the Meadows and Randers authored Club of Rome “Limits to Growth” study.   The excerpt is on the deep reasons why the science, as solid as it still seems to be, isn’t widely accepted.    Science is still struggling to find a comfortable way to discuss natural systems whose innovative systems are housed internally, and so largely hidden from view.

___________

I think the real reason the public as well as most of the scientific community is largely ignoring the rather well established hard limits to growth, is that it presents the scientific community a new problem it hasn’t yet learn how to deal with.   It has yet to find a good way to make sense of self-designing and self-managing systems, like weather systems, cultures and economies, that have working designs that are  hidden internally, displaying organization much too complex and localized to be determined by external forces.

Science is built around identifying how one thing controls another,
not how to study the  patterns of uncontrolled systems and how they became designed to work by themselves.

So science is naturally somewhat lost in discussing how they work, having no model for what are better described as “opportunistic” than “deterministic” systems.   Though both climate and economies display highly inventive systems, they do still necessarily operate within what traditional science can define as their natural bounds.     Climate is still fundamentally a complex pressure-temperature behavior, of unchanging deterministic processes following fixed laws of science.

Economies though, are able to be far more creative, and move the boundaries of what is possible by innovative design, much further than the push and pull forces of the weather can.   It has given traditional science very little to anchor reliable theory on, except as in the Limits to Growth study, fixing boundary conditions and experimenting with multiple options.  Still, because economies do display deeply creative behavior, constantly inventing new ways to use energy as a normal rule, that natural science still lacks a widely accepted way to study them as natural systems, adds uncertainty for others to what anyone might say about them.

Constantly inventing new organization is just what natural systems ‘do’.   It lets economies as well as ecologies create new kinds of organization and uses for their energy resources, making formerly useless things highly profitable often enough.   Using the profits as returns on energy investment to grow by building more innovations.   It’s complicated by not being a ‘numeric’ process, though we can see it through our measures.   It’s an “organizational process”, of fitting complementary parts together, more amenable to study as a “pattern language” of “design elements” than equations.

The rigid limits of any mode of productivity still do exist, of course, but as limits of the organizational processes science has yet to find a way to study.   Those limits are still determined by the earth and the organization of the internal and external systems that any innovation depends on, but with each new innovation there are new unknown limits.  It leaves a stubborn problem for traditional scientific prediction.   What seems to work better is a language of observing such systems to see when their own organization is being stretched.

Natural systems generally link individual units of organization in an open rather than deterministic environment, each with its own internal organization that emerged during its own development, creating a serious mis-match between the natural design and the information an observer could collect, and with the kinds of behaviors that can be emulated by equations.

That big problem for science also makes a big and very fascinating subject of study, that science has quite generally not realized is there, having avoided the study of self-designing and managing systems in general.    Self-designing ans managing systems not only seem to develop by themselves, but to have their “works” hidden internally within the boundaries of their design, as an individual system maintaining internal organization for responding to external systems, like we see in living systems as a special case in point.   Continue reading Can science learn to read “pattern language”…?