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A B S T R A C T  
Measurements of change over time generally record physically continuing processes as a 

series of number pairs.     Substituting mathematical functions for the data is one way to 

reconstruct an abstract continuity of the process to make a useful modeling tool.     

Another means of reconstructing the continuity of events is to apply  an algorithm to the 

data that adds new points toward making a constructed continuity by iteration.    This 

work uses the latter approach guided by physical principles derived from the 

conservation laws to study the underlying difference structure of recorded data sets.    

This appears to improve the resolution of the images of physical processes that can be 

obtained.    Unexpected new information about the structure of natural systems is 

regularly found.    The approach also provides an interesting new  test for the validity of 

the conservation laws, i.e. whether naturally occurring processes display the specific 

time-series difference structure implied.     The fundamental problems of the 

discontinuity of information and the difficulties of modeling the complexity of natural 

events are briefly discussed.      The analytical software developed for the purpose is 

outlined and examples provided. 

Additional Key Words: time-series, forecasting, systems, growth, modeling 
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1 .  G E N E R A L  S Y N O P S I S  
The development of this method is intended to provide a new tool for investigating 

context and history dependent processes.   It might apply equally  to research on complex 

electrical, chemical, ecological, social or evolutionary processes and provides a way to 

further extend axiomatic scientific inquiry into the elaborate true stories told by 

individual events.    It can not be used where no process of change is observable, such as 

with nuclear particle interactions, or where the available data is not sequentially ordered.    

What is essentially new  in scientific content is the attention to individual events, and the 

construction of sequence continuities to without mathematical representation and 

replacement.    To do this, with straight forward technique, data series are considered as a 

direct images of a natural event rather than as a statistical disturbance of a mathematical 

function.   This requires a reconsideration of standard scientific methods of interpreting 

data established as far back as Lebesgue (Weiner 1949, p3)    As it is for any other 

methodology the basis of validity for this work rests on its ultimate usefulness to others. 

The key scientific problem addressed is the inadequacy of lists of data points to represent 

the complex continuities of the events we observe.    The curves of data points are always 

made of dots and don’t tell us how the dots are connected.     The traditional solution to 

this problem is to develop an equation that defines a curve passing through nearly the 

same dots, and  then use that equation for predicting the course of similar events.   This 

works well when reasonably simple equations provide reasonably reliable results.   In 

many cases the circumstances are complex and every attempt at writing an equation 

produces very unsatisfying results.    One of the reasons is that there are an unlimited 

variety of mathematical structures that can closely fit the data, and perhaps none which 

describe the natural process that produced the data.   The problem is to find some way to 

directly look at the underlying process structures . 

Here the object is to distill arithmetical difference patterns as they exist within a raw data 

set.    These can be used as behavior models as is, or simplified in differential equations 

and used for modeling in the conventional way.    The basic method is to insert new 

points in a time-series record that imply accelerations of change that are more likely than 

those implied by inserting new data points on the connecting straight line segments.    

Connected line segments describe alternating null and infinite accelerations of change, 

and the laws of energy conservation imply an absence of infinite accelerations.    The 

type of continuity thus constructed can be called ‘organic’ because it is directly derived 
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from the natural subject.    As will be seen, it also develops a mathematical structure 

more complex than can be represented in mathematical functions. 

The methods for inserting points are guided by the need to minimize  the information 

content being added while developing a form of representation that is consistent with the 

conservation laws.   An additional principle of reconstruction is added for data sets seen 

as multiple scales of description such as fractally organized and self-correcting 

(homeostatic) processes.    These  can be treated as the superimposition of underlying and 

superficial processes.   Each many useful scales of description can be isolated for 

separate study by  locating the  inflection points of the implied data continuity. 

One of the examples to be used here is a record of a simple physical motion, taking about 

a half second.    The other, is the recorded history of U.S. economic product, covering 

about 130 years.    Though this is an unfamiliar subject in the literature of the physical 

sciences, it provides an excellent example of a complex unrepeatable individual event for 

which new methods of investigation could be very useful.   There is plentiful data and 

various well developed alternative approaches for imaging the structure for comparison.    

That the subject itself is a familiar one is also important.    Direct experience of any 

subject is necessary for contextual understanding.   In many cases this approach relies 

more heavily on contextual understanding  than others.    The object is to identify natural 

structures in dynamic and locally unique events where structure is normally very difficult 

to find.    This quickly and directly takes you to questions that are just a little beyond the 

limits of our understanding.    In the case of the economic record the principle continuity 

derived identifies an unexpected but understandable large scale pattern underlying the 

historic direction of the growth rate.    That this result is not a coincidence of this 

application is supported by using this method to duplicate a controversial discovery made 

recently with an advanced econometric method, (Young 1994)i .   This supplemental 

example is presented in Appendix B along with some a discussion of other recent topics 

in the statistical analysis of time-series. 

Appendix A describes the software developed and used for this application.   

Correspondence and good quality data for experimental use describing any complex 

event would be welcome. 

                                                                 
iConcerning a close dynamic relationship between the reconstructed first and second derivatives of 
long-term growth and unemployment trends using a non-linear variable parameter  spectral 
analysis method/ 
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2 .  I N T R O D U C T I O N  
All scientific work rests on observation.    In conventional scientific research 

observations are collected and examined and then a hypothesis is formed and tested 

against the observations, usually in terms of how closely a mathematical function 

statistically fits the data.    The subject here concerns the step in this process prior to 

constructing or testing a mathematical model, the direct examination of the data.   Here 

the data is considered as a direct image of the subject, not a statistical disturbance of 

some underlying function, and the object is to extract improved images of the natural 

process structures from it. 

The origin of this work was an effort to investigate a family of complex events that were 

individually coherent but unpredictable, a study of air current networks in natural micro-

climates(Henshaw 1978).    When local room to room scale, or larger air currents 

develop, the pathways are established as smaller air currents of various scales wander 

onto the same paths and then coalesce to form a climax current structure.    That climax 

structure may remain stable until the remote thermal imbalance that drives it is depleted.   

Then it breaks up.    

In the field of fluid dynamics engineers now have specialized computational toolsi that 

could be very helpful in micro-climate study and there is some interesting new academic 

work on related micro-current process structures.ii    Still, there is little to be found 

addressing the common types of natural air currents or their evolutionary processes for 

which simpler methods were then being successfully used for both experiment and 

design.    The work presented here comes from that experience as an effort to describe 

how relatively simple techniques can yield some degree of structural knowledge of 

complex natural systems currently beyond the reach of the conventional scientific 

methods. 

The point at which that study became productive was when the classic sequence of 

exponential and asymptotic progressions from origin to decay, the permutations of  

exponent and parameter sign reversals: 

 [++]/[-+]/[+-]/[--], or graphically[    ] (1.1) 

                                                                 
iCFD, Computational Fluid Dynamics has been applied to natural convection problems with some 
success in various fields including building climate modeling and design.    
ii Applied Scientific Research V51 1993 “Advances in Turbulence” 

PCON-draft B 4 ©PFH 6:01 PM 

Philip F.H.
Contains: the structure of the paper and purpose; origin of inquiry



were recognized as corresponding to distinct periods of organizational change .   These 

patterns appear in the growth and decay of air flows in evolving current structures and 

also serve as useful markers in the progressions of individual emerging systems of other 

kinds.   In air current structures the organizational changes during these periods could be 

characterized as using the names: Connection, Unification, Separation and Passing, 

comprising a complete evolutionary history from beginning to end.    These descriptive 

terms for the phases of organizational change were chosen partly to form the acronym, 

CUSP, because each growth period is a process of leaving one organizational state and 

approaching another.    There are many cautions needed when using these terms and 

markers in general application and a lengthy discussion is not included here.   Among the 

principal difficulties confronted is the individual uniqueness and transience of any 

occurrence, and that our information about them is usually sketchy. 

This work fits most directly into the main stream of scientific research as a variation on 

current methods used in the areas of computerized pattern recognition, forecasting and 

simulation, and as a new tool to add to the study of time-series.   The first step in 

reconstructing a natural process for computer simulation is to “derive a difference 

equation from finite difference approximations of the derivatives”(Smith, 1987 p143)     

What this work provides is a disciplined method based on physical principles for 

enhancing the finite difference approximations of the time-series data.    The results may 

be used to assist in developing a better modeling equations or in place of them or to 

identify structural relationships directly.  

The general scientific texts on time-series studied for this paper i begin the study of a data 

set with statistically mixing adjacent data points, usually by some kind of averaging.   It 

is generally considered that scientific study must treat individual records of events as 

statistical representations of a larger class of events and their universal mathematical 

functionii.   Not only data from different series are treated statistically, but also the data 

points representing different times in the same series.    Beyond consideration for the 

uncertainty of the measurements, this latter practice does not seem to have a basis in 

                                                                 
i(Weiner 1949)(Otnes & Enochson 1972)(Meisel, 1972)(Chatfield 1975)(Cuthbert & Wood 
1980)(Harvey, 1981)(Kmenta 1986)(Smith 1987)(Evans 1988)(Casti 1989)(Mills; 1990)(Bendat, 
1990) 
ii(Weiner 1949) p1 ‘Time series are sequences...studied with respect to the statistics of their 
distribution in time”  p3 “The events which actually happen in a single instance are always referred 
to as a collection of events which might have happened”   p11 ”Without at least an approximate 
repeatability of experiments, no comparisons of results at different times are possible, and there 
can be no science.  That is, the operators which come into consideration are invariant under a shift 
in the origin of time.”(original emphasis) 
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theory, though it may be expedient sometimes.   Especially when considering the 

unrepeatable aspects of individual events, it seems more appropriate to consider the data 

as a direct image of the subject process, i.e., of what actually occurred, rather than as an 

image of what might have occurred.   When considering a unique individual record, and 

time as a process rather than as a location, the averaging of adjacent points blurs the 

image.    Instead of first ‘softening’ the variations from point to point, here the equivalent 

first step would be to sharpen the image, based on assumptions such as physical 

continuity, by inserting new points where one could realistically expect them.    

Unlike the traditional approach to time-series where fitting a function to the data is the 

primary object, here the approximation and replacement of a data set with a formula is 

consciously avoided.     The principle purpose is to preserve the details of events so that a 

clear image can be constructed.     Here, instead of an equation, the raw data itself is the 

preferred mathematical analogy of the subject process and the object is to extract 

information from it.    The results of analysis are thus homoeomorphic representations of 

the behavior, rather than paramorphic representationsi as are the normal practice in the 

physical sciences.   The resulting objects, of course, also need to be handled differently. 

It was fundamental to the construction of this method to discount the normal supposition 

that natural processes are mathematical in nature, a presumption that seems to date back 

to Aristotleii    This grew out of an interest in what could be learned about periods of 

transition between mathematically regular states, when any preceding or following 

mathematical structures would be undefined.    Restricting a study to mathematical 

descriptions inevitably excludes consideration of these transitional processes and periods. 

The use of mathematics for describing natural events is problematic in other ways as 

well.   Mathematical functions are generally either defined throughout all time or begin 

and end abruptly or with uncertainty.    Certainly our observations begin and end 

abruptly or with uncertainty, but that is not inconsistent with natural processes being 

strictly temporal and developmental.    It could be just that there are always beginnings 

and endings beyond the sensitivity of our measures.    The structure of mathematical 

functions also generally remains constant throughout their range whereas the processes 

of a individual events can be in constant flux.   Mathematics is also difficult to make 

                                                                 
i(Harré 1972, p 182) 
iiThe practice of representing nature as mathematics appears to have originated with Aristotle, who 
wrote that ”it is manifest then that time is a number....and is continuous, for it is of what is 
continuous” and “....It is because the magnitude is continuous that the change is too” Aristotle’s 
Physics, Book IV 220a24 & 219a10 
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deeply nested (hierarchical) in its structure as the systems of nature tend to be.    This 

structural dissimilarity between mathematics and natural behaviors can conceal many 

phenomena, especially when mathematics is used to exclusion for describing events.    

For example, the use of mathematics almost inevitably constitutes natural processes as 

exogenous (i.e. ‘following’ a formula), when, in many cases, and perhaps in general, the 

structures of nature might more reasonably be considered as endogenous (i.e. self-

evolving). 

The difficulty of representing transitions between separate states of behavior with 

mathematics can be intuitively understood from the common experience of driving on a 

road with ungraduated curves, resulting from the surveyor laying out the road by splicing 

one geometric curve to another without any transition.    Staying in the driving lane 

requires sudden jerks of the wheel.   In mathematical description, these abrupt changes of 

mathematical definition are identified as points with infinite rates of change in the 

derivatives.    A kind of seamless organic continuity  that is not easily described, rather 

than abrupt discontinuities between states of simple description, is much more 

characteristic of natural processesi..    

Among the subjects that will not be addressed at length are the specific mechanisms of 

natural organizational growth and decay.    It appears that these frequently involve 

cascades of events, interacting with contextual located remnants of related past events 

and other varieties of distributed and circumstantial causation.   The approaches to this 

subject of general systems theoryiiand the physical science of dynamics concerning 

complexity and chaosiii  take different approaches to the subject but there is much in 

common in terms of the particular problems of nature recognized.   It is hoped that the  

techniques of reconstructing continuities presented here will be significantly useful for 

further identifying the problem for both of these disciplines, as well as making a 

contribution to the art and science of time-series modeling. 

                                                                 
iThe positivist route to validating generalizations can not be met for continuity.   Continuity is a 
presence of information about connecting processes, and discontinuity an absence of information.  
Since all measures and observables begin and end with an absence of information neither 
continuity nor discontinuity of natural processes are refutable, thus the weaker test of whether a 
principle of continuity is useful is adopted here. 
iisee (Van Gicch 1978)(Miller 1978)(Meadows, Meadows & Randers 1992) 
iiisee (Looss & Joseph 1980)(Gleick 1987)(Nicolis & Prigogine 1989) 
(Lewin 1992)(Kauffman 1993) 

PCON-draft B 7 ©PFH 6:01 PM 



3 .  A  P R I N C I P L E  O F  P H Y S I C A L  C O N T I N U I T Y  
The principle of energy conservation can be used to suggest a new general 

principle of continuity in physical motion, and by  implication, for the general 

continuity of change in physical systems.    This will then provide both a basis 

and a test for the presumption of continuity for investigating the records of 

individual events.    

 A simple example of where the test would apply is in the motion of colliding 

billiard balls.   There is an easily described pattern of motion before and after 

the collision that can be calculated from a list of the times and locations of the 

balls.    Without an exceptionally high speed recorder, however, a discontinuity 

of description would appear at the transition from one steady state to the other, 

the gap in the record during which the balls are actively colliding.    If physical 

continuity is assumed the data is considered as describing a process that does 

not have infinite accelerations and can be explored for concrete evidence of the 

transitional process that presumably must have occurred.   The general 

demonstration and usefulness of the continuity principle follows from 

identifying a particular form of exponential-like acceleration that theoretically 

must and apparently does occur in natural processes of most kinds. 

The theoretical demonstration begins by presenting the conservation of energy as related 

to the conservation of momentum and reaction forces in an infinite hierarchy  of physical 

laws where each law  can be stated as the derivative and integral of others.    The three 

basic lawsi are stated in the first three lines of equations in table 3.2 below.   In reverse 

order, the first three statements under the heading of “Unified Form” are created from 

their “Conventional Form” by  substituting derivatives of distance (s) for acceleration (a) 

and velocity (v), and in the case of energy conservation, the conventional term 1
2

2v  is 

replaced by  the integral of its derivative ( v dv⋅∫ ), a quantity having the same derivative 

rank as distance (s).      

The general principle of continuity is then derived by successively differentiating as a 

limit and concluding that the sums of all derivative rates of mass motion within a closed 

system are conserved.   This yields a curious but firm statement parallel to the 

conservation of energy, momentum and forces.    Without presupposing any particular 

                                                                 
iFor example see (Miller 1967) pp 114-150 
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interpretation one can conclude that the mathematical laws of conservation imply that the 

physical beginnings and endings of motion are conserved as well. 

To this point little definition has been given to the behavior of individual masses, only to 

the sum of mass accelerations within a closed system.   Now we will consider how 

individual masses are further constrained in the manner in which they can accelerate and 

then derive an observable form of acceleration which, by implication, individual events 

must incorporate.   

A corollary of the conservation principle, shown under the heading “Limits of Motion” 

in table 3.2 establishes that all mass accelerations must be finite, starting with the basis 

from relativity that velocity can not exceed the speed of light v < c1 (3.2.2c).   If there 

were a mathematical function fully describing a change in movement every derivative 

rate of the function at every point in time (eachr ) must also be less than some constant 

and therefore finite , as follows: 
n

For i, j, l, n - integers; c, k, p, q-constants;     W - work; F - forc

If, at the n’th derivative level r cn n<  3.01 

in any finite period  r r t kn n n= ⋅ ++1 ∆   

by substitution r t kn n cn+ ⋅ + <1 ∆  

and ( )r c kn n n+ < − ÷1 ∆t  

let ( )c k t cn n n− ÷ = +∆ 1  

so that 

at the n+1 derivative level r cn n+ +<1 1 3.02 

3.1 Basic Formulas of Work 

W mv m
ds

dt
= = ⋅

⎛

⎝
⎜

⎞

⎠
⎟1

2
2 1

2

2

 
 Work, Energy of accelerating a mass to a 

velocity 
 

F ma m
dv
dt

m
d s
dt

= = ⋅ =
2

2  
 Force corresponding to acceleration for a mass 

(a first derivative of Work) 

3.2 Laws of Conservation and Continuity 
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 Conventional Form 
 

Unified Form 
 

Limits of Motion 

    
1. Conservation of Energy 
• sum of energies is constant 
• 0 derivative level 

a.    
1

2
2m v kj j

i
⋅ =∑  b. m v dvj j

i
k∫∑ ⋅ =  c. s c t kj < ⋅ + 1  

    
2. Conservation of Momentum 
• sum of momentums is zero 
• 1st derivative level 
 

a. m vj j
i

⋅ =∑ 0 b. m
ds
dtj

j

i
∑ = 0 c. v cj <  

 

3. Equality of Reaction Forces 
• sum of forces is zero 
• 2nd derivative level 
 

a. m aj j
i

⋅ =∑ 0  b. m
d s

dtj
j

i

2

2 0∑ =  
 
c. a cj < 2  

4. Un-named 
• sum of 2nd accelerations zero 
• 3rd derivative level 

 
b. m

d s

dtj
j

i

3

3 0∑ =  
 
c. r cj < 2  

                            
5. Principle of Continuity 
• sum of mass accelerations zero 
• n’th derivative level 
 

 
b. m

d s

dtj

n
j

n
i

2

0∑ =  
 
c. rj nn

< c  
 

3.3 Individual Events   
We now consider some individual mass (m)within the system S.    If m is at rest, for it to 

develop a positive velocity its acceleration must have been positive for a finite period.    

The same then is true for it to achieve a positive acceleration, and for every other 

underlying acceleration.   Thus for there to be a change from rest to motion, there must 

be a finite period during which all underlying rates are positive.    One class of 

mathematical functions of this kind are the exponentials.    The polynomial form of an 

exponential directly results from the successive integration of a constant. 

Assuming for some large n the n’th derivative rate of change is greater than and 

less than some pair of constants: l r kn n> > n

n

 3.30 

the integral of the lower bound constant, including a lower bound integration 

constant gives: r r k t kn n n− −= = ⋅ +∫1 1  3.31 

in general, for i less than n the polynomial expansion of the integrals of r kn n>

 r
k

n
t

k

n
t kn i

n n n n
n i+

− − −
−>

−
⋅ +

−
⋅ +

( ) ! ( ) !
. . .

1 2
1 1 2 3.32 

As n and n and i are increased as a limit this will match the general polynomial form 

of the exponential function when all values of the series of constants k   are real and 

i

n
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positive.   Since during some finite period at the transition between rest and motion r   

must be positive and finite for arbitrarily high all r  must be positive and finite, there 

will be constants k  and 

n

n

n ln values of n, there will be a series of constants  and q  

close to , above and below, for which the limit of 3.32 describes exponential functions 

closely bounding the physicalleast upper bound and greatest lower bound exponential 

functions bounding the curve during the period.   An ideal derivative reconstruction 

algorythm would define the least upper an greatest lower bounds for the derivatives 

implied by a given set of data. 

pn n

The implication is not that energy conservation requires a ‘regular’ exponential in every 

beginning and ending of change.    No condition has been placed to require all 

integration constants to be equal, for example, or even for the parameter values to be 

actually constant.     One additional interesting property of exponentials seems to be 

preserved none-the-less, and may be demonstrated elsewhere.    That is that the ratio of 

the successive derivatives approaches a constant when the independent variable 

(expressed above as ‘t’ for time) has a unit value.    This indicates a way in which the 

separation trajectory  during the periodof the upper and lower bound curves can be 

interpreted as being arbitrarily small.    Thus it would appear that a change from any state 

of rest requires a complex hierarchy of accelerations that fit at least approximately the 

form of an exponential curve.     

Exponential, or exponential-likThat accelerating acceleration and decelerating 

deceleration are required for continuity in physical events should be no particular 

surprise.     Such exponential, and complex exponential-type progressions are readily 

observable in the beginnings and endings of events of all sorts.    That this is difficult to 

describe theoretically and seemingly quite complex suggests a need for further work. 

What is mathematically curious is that this describes what seems to be a mathematical 

impossibility unless physical processes are unbounded in time.    EAnother problem 

concerns the fact that exponentials and other functions can be made to very closely fit the 

observable regular transitional processes, but can not do so unless they aremeasures of 

change, but do so with values defined throughout all time or have a discontinuity at their 

beginning and  ending pointswith discontinuities at their points of beginning and ending.    

It is a simple proof that any continuous single valued function that contains a constant 

(zero slope) segment in any of its derivatives, or that is made of a spliced sequence of 

continuous functions must contain infinite derivatives.    All these forms of equations are 
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thus ruled out as candidates for describing events where the conservation laws apply.    

What you might call a naturally continuous function appears to be quite hard to define.   

Such functions may be ultimately  un-writable in fact, but do , however, appear to be 

numerically constructable with writable rules.This author’s expectation is that the 

implied continuous paths of physical measures will remain difficult to define 

mathematically, and greater reliance will be made on iterative constructions of continuity 

based on definable rules. 

As mentioned in the introduction, because of the gaps in information at the limits of 

observation it probably can not be directly observed whether transitions from and to 

steady states are or are not continuous.    The demonstration is then left to the weight of 

the evidence and the usefulness of either presumption.   Ordinary mathematical functions 

can not describe continuous transitions between different formulations, and the question 

would be whether and how natural processes do, and what kind of mathematics to 

develop to help us understand what happens.    If it were widely recognized that 

measures of transitional events normally include distinct starting and ending periods 

when the observable underlying rates of change are all of the same sign, then the 

principle of continuity and the laws of conservation would be re-confirmed. 

4 .  A N A LY T I C A L  M E T H O D S  
The method of data analysis used here treats time-series as direct but incomplete images 

of a physical processes.   The rules applied to a data sequence serve to partially complete 

the image and expose layers of implied underlying structures in the accelerations of 

physical processes.   Unlike a conventional search for mathematical structures in nature, 

no mathematical statement of the natural process is required, only confirming 

identification of the newly exposed structures and events by other means.    

These methods are not formalized and work is needed to develop fully reliable analytical 

rules, terminology and measures of confidence.    An algebra of natural sequence analysis 

seems to be needed that might be similar to the algebra of difference equations developed 

to approximate solutions to systems of differential equations.     The algebra of difference 

equations translates mathematical functions from the form of continuous but unsolvable 

mathematical relations into the form of discrete solution sets.   An algebra of natural 
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sequence analysis would start with discrete solution sets and establish methods for 

extracting the implied derivativei structures.    

Another practical difference from the normal scientific method is the manner of using 

statistics.    In conventional work you propose a mathematical equation and then test its 

statistical fit with the data as a measure of its validity.   If adjusting the constants of the 

function allows it to fit the data well, or at least better, the mathematical relation may be 

substituted for the behavior in future discussions.   The normal measures of fitting a data 

set are based on a least squares regression where the measured values of the data at 

different times are considered to be stochastic (random) distortions of the function being 

evaluated.   The probability that a reconstructed continuity has accurately identified the 

true inflection points of the underlying process can not be measured that way, thought it 

is still a valid issue worthy of study.     

In the analysis of an implied continuity it is generally assumed that the mathematical 

function which is represented is at least too complex to be written.   The validity of any 

internal structure of the data exposed is primarily demonstrated by the repeated 

appearance of discovered structures from multiple views and independent confirmations 

by other means.     The approach is therefore more archeological, rather than military, in 

its conquests.   Every  scrap of data is important, and the analytical tasks are a kind of 

filtering and distilling, more than the more familiar approximation and replacement 

which characterize conventional science. 

Because so much trust is put in the data, it is especially important whether or not it is 

reasonable to infer the continuity of a subject for which you have only an intermittent 

record.   Without that assumption a data sequence can not be taken to describe an implicit 

continuous phenomenon, nor would there seem to be any other necessary relationship 

between its separate points.    When continuity can be assumed, one can then proceed to 

identifying and separating different scales of continuity in the data to more clearly 

                                                                 
iNote that this is a mixed use of the term ‘derivative’ as defined in the calculus.   The derivative 
structure in this case is implied by patterns that appear in successive differences in a finite real 
valued series.    One might prefer to reserve the use of the term derivative exclusively for 
continuous mathematical functions rather than allow it to apply to physical systems and finite 
series as well.    However, the author feels uncomfortable with discussing the ‘differences’ of a 
series or having to always use terms like ‘the underlying acceleration patterns’ of natural systems, 
and so ‘derivative’ will be used somewhat broadly here to refer to implied or potentially 
constructable underlying continuities of acceleration.    As usual the terms ‘differencing’  and ‘1st 
and 2nd differences’ will be used when referring to specific arithmetical operations.     The term 
‘integration’, however,  will be used interchangeably due to the difficulty of using ‘additions’ or 
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display the natural process structures that may be present.   The kind of information 

being sought by this method is often so very hard to gather by fitting conventional 

equations, if continuity analysis provides only small amounts of additional information 

the results could be quite valuable. 

In this study a general graphical database software, AutoCADi, was used in conjunction 

with AutoLispi programming to handle data sets as graphical objects to which analytical 

calculation functions can be applied.    The graphic figures that follow are direct plots of 

the data sets used and the results of applying the various analytical operators.    More 

information on the program operators used and programming details is provided in 

Appendix A.    The basic procedure is to import a time series data sequence as a 

graphical database object called a polyline, and then to use analytical functions to create 

other time-series curves from it.   These functions generally proceed from one end to 

another evaluating the relationships between a number of adjacent points.    As each new 

curve is created it is tagged with the names of the operations applied to make it, so that a 

record of its history of development is maintained and the steps reproducible. 

The limited technical objective of the current paper is to present a method of 

reconstructing the continuities of time series data to make them sufficiently differencable 

to expose unexpected new information about the subjects being considered.     This 

seems to have been achieved to a satisfactory degree derivative reconstruction (dr) using 

interpolation and smoothing based on sequentially minimizing the fourth derivative to 

reconstruct the implied continuities, and inflection point bridging to separate different 

scales of data fluctuations.     

A preliminary statement of the analytical principles used is as follows: 

(4.1) The addition of intermediate points in a data sequence that does 

not introduce unnecessary fluctuations and minimizes the 

implied range of accelerations probably provides a more 

accurate representation of the original continuity than the 

original data (the basis for derivative interpolation). 

(4.2) When the fluctuations in a series are of the scale of the 

                                                                                                                                                               
‘periodic summation’ of a series, or other like terms that would be more specific to a use with finite 
series. 
iAutoCAD and AutoLISP are registered trademarks of AutoDESK inc. 
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statistical accuracy of the measure itself then adjusting points to 

minimize the implied range of accelerations between adjacent 

points probably provides a more accurate representation of the 

original continuity than the original data (basis for derivative 

smoothing). 

(4.3) A subset of a sequence that eliminates fluctuations describes a 

larger behavioral scale.   Fluctuations about a trend tend to cross 

the trend at their points of maximum slope.   Connecting these 

points, will produce a larger scale of description with the 

minimal accelerations necessary. (The basis for inflection point 

bridging). 

Following these principles operators were made for successively constructing new points 

for the sequence to locally equalize the 3rd derivatives on either side, and for trend line 

bridging to construct larger scale descriptions  by connecting points with implied zero 2nd 

derivatives.     

Third derivative interpolation and smoothing were found to be quite successful in 

reconstructing a continuity.   What they produce are the points a curve would go through 

to arrive at the same end with minimal underlying accelerations.    This accomplishes 

remarkably strong local smoothing  with much less distortion multi-point averaging,.     

Third derivative smoothing by the algorithm used (see Appendix A) primarily regularizes 

the accelerations in the path of the curve, not its destinations.   With some care, 

derivative interpolation and smoothing make even short data sequences repeatedly 

differencable, with a good likelihood of meaningful results.     

Trend bridging was developed initially to thread through fluctuations in a way that 

mimics the trends that can be seen by intuitive visual inspection of an otherwise irregular 

curve.    The function developed was soon found to be especially useful for separating 

the fluctuations and trends of homoeomorphic (self-correcting) processes.     For these 

processes there is sound physical reason for the rates of excursion from the norm to 

reverse, like the reaction forces on a vibrating string, as the position of the subject 

crosses the point of equilibrium.    Where other physical assumptions are more applicable 

other analytical methods would need to be used. 
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Derivative reconstruction serves somewhat like a micro-scope for natural process 

structures for its ability to expose otherwise hidden smaller scale events.    Inflection 

point bridging might be referred to as a macro-scope for its ability to expose otherwise 

hidden larger scale structures.   Like other magnification tools, issues of focusing and 

limits of resolution are significant concerns.     

In addition to these essential operators a variety of support functions were developed  

including, basic differencing and integration functions, a general graphic calculator 

accepting curves as variables, and utilities to increase and decrease the number and 

spacing of points.    A directional bias is sometimes introduced by including new points 

with the adjusted values of old points in subsequent evaluation sets.   That bias was 

minimized by combining both forward and backward scans of the data.   End points are 

generally kept in the resultant curves, even when the rule primarily concerns points in the 

middle of a range.   This was done by adjusting the algorithm near the ends of the 

sequence to either operate with fewer points or to use projected points following a 

damped derivative projection from adjacent points in the series.    

End points are kept in the sequence for two simple reasons.    Dropping points whenever 

there are too few preceding or following points to perform a particular calculation causes 

a rapid decline in the number of points available to consider.    It may be less than ideal, 

but it is also more accurate to include end points treated by different rules, presenting 

degraded results toward the ends of the curves, than to portray the event under 

consideration as ceasing during those periods.    It should be noted that because end 

points were treated differently they therefore also need to be interpreted differently.   In 

presenting graphs of the results the regions of less confidence near the ends may be 

drawn more lightly to suggest that the quality of the information fades at the ends of the 

curves. 
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5 .  I M P L I C A T I O N S  O F  P H Y S I C A L  C O N T I N U I T Y  
The conventional scientific meaning of the term ‘continuity’ concerns the proximity of 

mathematical points in relation to each other within the definitions of the calculus  Here 

the concern is not with mathematical continuity, but with the physical continuity of 

natural processes and their investigation using the implied continuity underlying time 

series data.   To the knowledge of the author, physical continuity  has not been 

specifically treated as a scientific subject before, only as a concern of metaphysics.    

The study of physical continuity retains the familiar intuitive meanings of ‘connected’ 

and ‘inseparable’, but because of its application to implied structures, which can not be 

fully defined, some of the completeness of the definition is lost.    The appropriate resort 

seems to be to define the term by reference, as a property of that still poorly understood 

way nature has of connecting things.   Wherever we look for smaller scale connecting 

events in-between the ones we already know about, to the limits of our observation, we 

tend to find them. . 

One of the simplest and best uses of this method is for identifying implied discontinuities 

in natural processes, as shown in figure 1.    Here a constructed curve gives the 

appearance of representing a smooth process of transition from beginning to end.   The 

actual curve shown was formed by mirroring a constructed exponential curve segment 

about the point where it reaches a unit slope.   Taking the first and second differences of 

the composite curve clearly displays the splicing points as discontinuities of description, 

where the formula abruptly changes, and identifies the original appearance of continuity 

as false. 

Such a curve may well offer a close scalar approximation to the measures  of its subject 

process and, by conventional rules, provide an appropriate representation of it .   Because 

of the abrupt transition from one mathematical description to another however, structural 

irregularities are introduced that are inconsistent with physical continuity.    One might 

also observe that these discontinuities re are located at points in the curve of particular 

interest, the points where the subject process would seem to be changing from one 

relatively constant state of behavior and description to another.   This is often where 

normal techniques break down, arbitrary patches need to be made, and the processes of 

transition are concealed within a gap in description. 
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A difference algebra of sequences that would avoid some of these problems would 

parallel the established algebra of the calculus.    The term ‘derivative’ is conventionally 

considered in terms of continuous mathematical functions according to the definitions of 

the calculusi.    Here the simple derivative of a sequence is a sequence of the successive 

differences.  

(5.1) ( )∆S s s s s s s s sn n= − − − − −1 0 2 1 3 2 1, , . . . .    

 where S is a sequence of n values 

  ( )S s s s sn= 0 1 2, , . . . .  

The simple derivative of a sequence with respect to another sequence(perhaps time or 

any other reference) is a sequence of ratios of the successive differences of the two. 
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where S and T are paired sequences of n values  

The proportional derivative, or exponential rate of a sequence is a sequence of ratios of 

the successive differences to their starting value. 
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where S is a sequence of n values  

One variation of interest is the derivative of a sequence with respect to one of its own 

internal structures.   If the sequence included a cyclic bias component that distracted from 

the subject behavior, for example, the derivative of the sequence with respect to the bias 

component will remove it.    The result will filter out the structure of the bias.    The best 

available mathematical description of the behavior, or different scales of behavior, could 

also be filtered from the data to leave a data sequence highlighting the differences 

between the two. 

                                                                 
ieg. R. Courant and H. Robbins 1978 
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(5.4) where S is considered as a function of bias B 
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where S and T are paired sets of n values  

and B is a paired set of n values to be extracted 

One of the more interesting features of the algebra of natural sequences is that the full set 

of equivalent derivatives of any sequence is very large.   Figure 2 shows one illustrative 

construction of a derivative hierarchy  from  a simple five point data set.    The result is 

consistent with the general principle of physical continuity and provides a special case of 

some interest.    A great many variations of this kind could be constructed to that could 

all be reintegrated to produce a curve passing through the same points as the original 

data. 

In this case the underlying derivatives were constructed with successive derivative 

interpolation, derivative smoothing, differencing and then artificial trend separation and 

compression.    This construction displays each underlying reversal  of accelerations as 

possibly having developed and decayed by its own finite and separate beginning and 

ending processes, each as a complete and independent event in itself.     

Though the example is a hypothetical construction, it illustrates that many complex 

hierarchies of process events could be consistent with the same simpler appearing data.   

Thus we would have to assume that any individual event could have any of a variety of 

complex underlying structures, and still have much the same outside appearance.   
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The example also illustrates some of the kinds of structural information that could be 

looked for and suggests the importance of having a quality of raw data capable of 

displaying a high level of detail.    It also raises an interesting mathematical question.   

What is the simplest form of constructable real valued series that is consistent with the 

principle of physical continuity?   It would seem possible that any form of derivative 

hierarchy representing an individual transition event that does not decompose into 

individual events would have regions where the scale of underlying derivatives would 

tend to infinity. 

The example also suggests a potential for investigating the causation of events in a new 

way.   You might find synchronized events in the second or third derivatives of, say, 

health care costs and rates of health club participation, or spark development and surface 

ionization, for examples.   If that was followed by a mismatch in the timing of underlying 

events, you could establish a probability that the two were independent trends with the 

same identifiable origin.    This  kind of reasoning could be applied to subjects of any 

other kind as well, perhaps cellular metabolic cascades or the evolution of plasma states, 

etc. 

Figure 2 also shows periods of monotonic growth (when all derivatives have the same 

sign) as implied by the general principle of continuity.   The monotonic periods implied 

for the original data are visible at the very beginning and end of the first derivative curve.   

Their shape and duration are contingent upon the underlying derivative events.   At each 

higher derivative level the number of events increases and the apparent durations of the 

first beginning and ending monotonic growth periods shrink.   Additional periods of 

monotonic growth appear at the beginning and end of each of the underlying events of 

each higher derivative level. 

This considerable complexity that must be presumed possible within the representation of 

an individual event with time-series data illustrates that the general principle of 

continuity is relatively weak in terms of defining the particular process structures of 

individual events.   The strength it has is for opening a door to a relatively uncharted 

territory of natural structures. 

6 .  E X A M P L E S  
Two concrete examples were prepared for this discussion, a recording of a simple 

physical motion, and the historic record of US economic product.   Some interesting 
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structure will be identified in each subject, but the primary purpose here is to display the 

methodology and analytical tools and not any particular results of using them.   A further 

demonstration is provided in Appendix B showing matching results with an advanced 

statistical method of time-series analysis. 

The recording of a simple physical motion was made of a hand movement recorded using 

a software utility that tracked the locations of the cursor on a computer screen.    The 

recording started and stopped when the changes in position first exceeded and then fell 

below a pre-set threshold.   An effort was made to capture the simplest single motion 

possible.   The historic record of US economic product was taken from the Dept. Of 

Commerce historical abstracts and includes the full record of statistically reliable 

aggregate data. 

6.1 The Dynamics of Simple Hand Motion 
Figure 3 shows a typical group of hand movement recordings without enhancement.   

Figure 4 shows the derivative reconstruction and differencing of one of these and Figure 

5 the same steps of reconstruction applied to a contrasting record for comparison.    The 

curve selected for use in figure 4 was chosen based on its apparent recording of a simple 

single movement impulse.     The intent in displaying these curves is to show what can be 

found in a data record with very few points.    The list of analytical operators used is 

shown below the graphs. 

In Figure 4 the reconstruction of the implied physical continuity was developed in three 

steps, two steps of derivative interpolation (din), inserting points so as to minimize the 

implied derivatives, followed by derivative smoothing (ddsm).   The record data has 9 

points and the dr interpolation 36 points.   This reconstructed approximation of 

continuity was then used as the basis for calculating the derivatives. 

Each of the derivative curves in this case was calculated using simple differencing of 

adjacent points combined with scaling for presentation (dif-2x0.xxx).   The scale factor 

applied scales the resultant curve so that its peak value is 4/5 the peak value of source 

curve.   Derivative smoothing (ddsm) was also applied after each successive differencing.   

The algorithm adjusts the midpoint of a moving 5 point bracket so that the local third 

derivatives before and after are made equal and the local fourth derivative zero.    The 

fourth derivative of the full record does not become zero because different groups points 

with different third derivatives are used at each step.  At the beginning and end of the 
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curve assumptions about the missing points in the bracket are used..   The combined 

procedure provides strong and gentle smoothing as evident in the flowing character of 

the derivative interpolation curve (2) without departing from the original data points, but 

it also introduces some subtle irregularities.   One of these can be seen in the slope of the 

derivative interpolation during the first data period.    It has a slight negative slope.   This 

results from using an assumption in the end point algorithm  that projects a damped 

continuation of future derivative trends into the past.    This is a good assumption in most 

cases, but not, as in this case, when there is clear reason to believe that future derivative 

trends did not continue prior to the beginning of the data.    

These effects are undesirable, and often avoidable, but for this presentation it was 

decided to not adapt the algorithms for each purpose and instead to use only one standard 

group of reasonable settings for all subjects.    A more stubborn group of irregularities 

introduced by the derivative smoothing procedure have to do with a tendency of the 

fairly simple algorithm used to introduce new second derivative inflection points when 

the source curve is either too rough or too regular.     Successive derivatives would 

magnify these irregularities greatly.    This is the reason for multiple applications of 

derivative smoothing (ddsm) at each derivative level.     

The general shapes of the higher derivatives are still believed to be substantially accurate 

representations, given that there is no procedure that will make up for the tendency of 

successive differencing to quickly exhaust the information content of the raw data.    The 

derivative level at which the information in the data has been exhausted varies from 

sample to sample and seems best indicated not by mounting uncontrollable irregularity, 

but by successive derivatives failing to suggest new pattern or to expose levels greater 

complexity .   In statistical time-series analysis data is commonly differenced until the 

remainder appears uniformly random, or ‘stationary’, and then reintegrated as a straight 

line with a statistical component.    Though this global combination of measures from 

different points in time is not valid in the reconstruction of an event’s physical 

continuity, it seems likely that the same phenomenon and useful limit of successive 

differencing may apply. 

The initial period of monotonic derivatives implied by physical continuity is apparent in 

figure 4 in the period of the first two data points    Though many other curves could be 

constructed that would reintegrate to reproduce the original data points, this set of curves 

approximates the simplest possible dynamic path of the behavior and the minimal 

introduction of information not part of the original record.     The period of monotonic 
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derivatives also appears in the results tautologically, due to the assumption of physical 

continuity being used and the presumption that there was no motion (a steady state) 

shortly before its measurable appearance above the sensitivity threshold the of the 

measure.    Thus the reconstructed image of underlying derivatives does not, and is not 

intended to, prove anything about the behavior in question, but only to create a 

reasonably justifiable image of the underlying processes which might be useful. 

One of the features of interest in Figure 4 concerns the shape of the third derivative 

curve(curve 5).    The third derivative curve (the implied rate of change of acceleration) 

quickly completes one major fluctuation, and then drifts back toward zero.    The 

dynamic portion of the curve is nearly complete by the time the peak velocity of the 

motion is achieved.   This seems to indicate that during this individual occurrence the 

period of physical impulse was very short, ending more quickly than it started, and that 

the period of decay following the peak was relatively long and behaviorally stable.    This 

could be interpreted as a relatively constant third derivative during the decay period and 

an implication that a second degree equation of velocity could be investigated for the 

character of friction drag in anatomical systems.   This may or may not seem strongly 

indicated, but is one example of the type of insight being looked for.    

Figure 5  shows  the reconstructed derivatives of a more common single movement 

event.   The data still appears outwardly regular, having only the one actual slope 

reversal , but is shown to be much more complex in its derivatives.    Though drawing 

implications about more complex events from limited data is less reliable, the third 

derivative (curve 5) might still contain useful suggestion of the subtle irregularities in the 

physical inpetus underlying the developmental processes of this event.  .    

The reliability of this method of investigation can be partly judged by comparing the 

scale and timing of derivative peaks constructed by other methods of smoothing, and the 

fit to the original data achieved by reintegrating derivatives after further smoothing.    

Figure 6 compares the differencing and reintegration of the raw data with these 

operations for derivative reconstruction and symmetric running averages.    The first step 

for each method is to construct an image of the implied continuity by interpolating new 

points, either by derivative interpolation (dr) or by linear interpolation and smoothing by 

symmetric running average (av), respectively.   For clarity these starting curves are not 

shown. 
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Given the correct integration constant, reintegrating the differences of the raw data 

exactly reproduces the original data (1 & 2).   The timing of the peaks in the raw data 

difference curve is in error by one half data period due to the convention of assigning the 

difference between two points to the time of the second point.    The smoothed 

differences of the av and dr curves (3 & 5) more accurately identify the timing of 

derivative peaks because additional data points have been introduced.    The scale of the 

smoothed av derivative and its reintegration are both in considerable error.    The scales 

of the smoothed dr derivative and its reintegration closely match those of the original 

data and its differences.    At higher derivatives these discrepancies are greatly 

magnified.    Given that this demonstrates that derivative reconstruction produces an 

improvement over running averages for representing the continuity of a time-series, the 

question remains whether the improved images created are of real things.   That can only 

be determined in each individual case according to whether the new kinds of questions 

that are raised prove useful. 

6.2 Growth Rate Trend of U.S. Economic Activity 
The history of U.S. economic product as recorded in the Dept. Of Commerce National 

Income and Product Accounts provides an example of the potential for surprising new 

results using derivative reconstruction on familiar and previously well studied  data.    

This same data set is an important focus of study in introductory economics i  and has 

been modeled extensively using conventional econometric ii  and dynamic systemsiii 

models.    Yet, according to one of the more pragmatic recent overviews of the 

econometric methods conventionally applied, little real advance has been made (Zellner 

1994)i   Throughout the literature on the subject there is a clear sense that the 

investigators feel there is a pattern in the data to be found and equally clear that it has 

remained invisible. 

What continuity analysis provides, based on the assumption of physical continuity and 

the homeostasis, is a greatly improved direct measure of the whole system growth trend.   

The use of this work would not be for making quick policy or investment decisions, nor 

quarterly forecasts directly, but for informing theoretical analysis and pragmatic 

forecasting methods.   Because derivative reconstruction interprets time-series as direct 

                                                                 
i(Samuelson & Nordhaus 1985) Ch 36 Economic Growth Theory and Evidence pp793   Referring 
to graphs of the national product accounts, “Figure 6-3 is important.  Linger over it.”. 
iisee (Kmenta 1986) 
iiisee (Winter 1994)(Meadows et al 1972)(Meadows,, Meadows & Randers 1992) 
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images of unique non-statistical behaviors  that are  mathematically too complex to 

model with equations, in direct contrast to the conventional methodsii, it is 

understandable that interpreting these results will require some adjustment. 

One of the suspicions that this analysis confirms is that the US growth rate has been 

declining.   However, the common notion that this trend began in the early 1970’s.iii    

appears to be an illusion resulting largely from the untreated data’s visual appearance.   

The actual decline in growth rates appears to have been taking place steadily over a much 

longer period of time.     

Figure 7 shows graphs of the Dept. of Commerce figures for annual U.S. GNP and 

GDPivv .   The measures have been scaled in constant 1958 dollars.   The GNP data 

includes foreign earnings of U.S. citizens and is no longer used as the principle measure 

of the US domestic economy due to the globalization of the economy.   The more recent 

figures available are for Gross Domestic Product.   In order to make a curve covering the 

whole period these two measures have been cut and spliced at 1960, a point in the middle 

of a period of when the two measures were nearly coincident.   Some of the easily 

recognizable features of the graph are  its general upward sweep, the major fluctuations 

of the 30’s and 40’s involving the great depression and World War II, and the staircase 

of recessions since the 1970’s.    For comparison a pure exponential (constant growth 

rate) curve is shown that seems to nearly match the historic trend until the seventies.    

This is the simple observation from which economists get the impression that the 

economy has had an underlying ‘growth constant’ which ceased operating for some 

reason in the 70’s. 

                                                                                                                                                               
i(Zellner 1994) p218 “Most ‘one shot’ attempts to model this variable.(GNP).have failed...many 
large-scale model forecasts (are) not as good as those of very simple univariate naive models.” 
ii(Kmenta 1986), pp 207 “In econometrics we deal exclusively with stochastic relations” 
 pp 203 “In fact the entire body of economic theory can be regarded as a collection of relations 
among variables..(as defined)..by a given equation” 
iii(Samuelson & Nordhaus 1985) pp 799 “the rapid growth in output per worker came to an abrupt 
halt in 1973” “after growing at 2 1/2% annually from 1948 to 1973, labor productivity grew at the 
much slower pace of 1/2% annually from 1973 to 1984” 
ivNational Product and Income Accounts  
Bureau of Economic Analysis, U.S. Dept. of Commerce ; 
NIPA 1869-1970 Gross National Product in 1958 Dollars Series F 1-5 , with the initial figure for 
1869-79 treated as an average centered on in 1874 
NIPA 1929-1982 Gross National Product in 1982 Dollars Table 1.2 (adjust 1958$) 
NIPA 1929-1988 Gross Domestic Product in 1987$ (adjusted to 1958$) 
vWorld Almanac 1994, Bureau of Economic Analyses, U.S. Dept. of Commerce  
NIPA 1990-1993 Gross Domestic Product p104 (adjusted to 1958 $) 
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Figure 8 shows the construction of a long term trend using derivative smoothing and 

inflection point bridging.   The first feature to note is that the trend curves thread through 

the fluctuations.   The Long Periods Trend (3) was produced in two stages of smoothing 

and bridging, shown in more detail in the enlargement of the 1920 to 1960 period.   The 

names of the operators used in the construction are listed below the graph.   Derivative 

smoothing with two iterations (ddsm-2x2) was used first to make a more regular curve 

(2) within the range of error of the data to use as the basis for locating local inflection 

points.     The Short Periods Trend (3) then results from trend bridging (tlin-1x25pts) 

drawing a curve through each of the inflection points in the dr smoothed data.     This 

operator would have allowed a bridge of up to 25 years between inflection points, though 

in application the longest period between inflection points on this application was 

probably 3 or 4 years.    Bridging algorithm produces straight line segments between 

inflection points including intermediate points corresponding to each data point in the 

bridge period.   Continuous curvature is then restored by derivative smoothing to find the 

points the curve would have had to pass through if its underlying 4th derivative 

accelerations are minimized.    

The Long Periods Trend resulted from a second stage of inflection point bridging to 

thread through each of the fluctuations in the smoothed Short Periods Trend, this time 

connecting alternating inflection points.    In the enlargement, the inflection points of the 

Short Periods Trend used to make the Long Periods Trend are indicated by the circled 

dots.    The uncircled dots are the inflection points that were skipped.    The Long Periods 

Trend is smoothed again before differencing. 

Using the same method to thread through time-series graphs of a swinging pendulum 

demonstrates the physical principles of simple gravitational motion.    Connecting the 

inflection points its horizontal displacement (a decaying sin curve centered on the time 

axis), would give you a horizontal straight line coinciding with the time axis, indicating 

the invariance of gravity.    Connecting the inflection points of a the pendulum’s vertical 

position (a decaying sin curve bounded by its stationary height) would yield a decay 

curve indicating the rate of energy loss of the system. 

Figure 9 shows some of the difficulty confronted by the conventional approaches to the 

problem of analyzing the economic data in this way.    The plot of annual growth rates 

(2) suggests a rate of growth wildly fluctuating about a 3.3% norm without any clear 

trend.   Even when the data is strongly smoothed using a running average (3) the growth 

rate trend (4) fluctuates irregularly about the norm without obvious trend.     The running 
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average calculation (dasm) used three point averaging forward and back for a total of 

five iterations, the first two with proportional center weighted averaging and the last 

three with unweighted averaging.   The growth rates were calculated using the 

proportional difference ∆y/Y plotting the ratio of the change during each period to the 

height of the curve.   If there really was a growth constant the growth rate curve would 

presumably have some tendency to parallel the horizontal 3.3%/yr proportional 

difference curve of the exponential graph shown in figure 7. 

Figure 10 shows a derivative reconstruction of the historic  trend in growth rates (3) 

calculated from the Long Periods Trend of figure 8.    To help evaluate the reliability of 

the reconstruction a comparison of the calculation on overlapping periods is shown in 

figure 11.    Here the analysis was done with look back comparisons from 1930, 1960, 

1980 and 1993.   In all cases the reconstructed trend during the ten year period preceding 

of the time of calculation diverges somewhat from later calculations.    In one case 

(1960) the direction of the trend in the end period is significantly different from that 

calculated with the benefit of future data.   These effects display the influences of local 

trends near the end of the analysis period and the degree of error that can be expected if 

this method were used for extrapolating future trends.    Given this qualification, what 

results is a rather clear pattern continuing to the present.    It is a pattern that, while not 

suggested by the direct and average rate calculations in figure 9, is completely consistent 

and clearly visible once you look for it.   The predominant trend throughout the recorded 

history of economic growth has been growth rate decline.   

No attempt is going to be made to explain why the economy behaved in the way this 

analysis suggests, but a little further discussion seems in order.   Of particular note is that 

there appears to be no indication whatever of there being a ‘growth constant’, but rather a 

series of relatively stable trends.    The current period of declining growth rates is shown 

beginning around 1960 , has been steady and shows no indication of turning.   The 

current trend of decline might be attributed to a drag on productivity growth due to the 

modern burdens of crowding, complexity, resource scarcities and conflicting 

environmental impacts, but these conditions did not exist in the previous long period of 

growth rate decline.   Some other source of drag was apparently operating at that time 

and the current source of drag may not be what we think.   One way to identify a 

common source of drag for the two periods of decline would be to look for other 

measures with matching trend inflection points.     
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The two long periods of growth rate decline are interrupted by a period of increasing 

growth rates shown as spanning from 1920 to 1960.    The period of increasing growth 

rates roughly corresponds to the development of modern heavy  industry and the general 

integration of the sciences, engineering and education with production, along with the 

compelling and disruptive events of the great depression and World War II.    It was also 

the period when government first took an active and comprehensive interest in economic 

affairs. 

Figure 12 shows a contrasting image of the structure of the growth trend resulting from 

using a slightly different sequence of derivative smoothing and bridging steps (series B) 

as compared to the one presented in figure 10 (series A).   Here the reconstruction of the 

growth rate (3), was made without smoothing the raw data prior to the first stage of 

bridging between inflection points.   Otherwise the constructions were the same. 

This new image of the long term trend is of interest partly  because it displays the 

possible large scale effect of very subtle differences in the data and analysis procedure.    

It is also of interest because the new image lends itself to a more event driven view of 

history than an evolutionary one.   The period of increase in the growth rate closely 

coincides with the period of the great depression and World War II, and seemingly little 

else.     

The possibility that the growth rate rebounded during the 30’s and 40’s in conjunction 

with the century’s two most disruptive events, and that our current trend of growth rate 

decline started immediately afterward in 1945, is intriguing.    It would support the 

‘accumulating rigidity & creative destruction’ model of economic cycles on a large scale.    

It might also portend a destruction of the rigidities in our present world order as the 

culmination of our current long trend of growth rate decline.   There are certainly other 

possibilities.   The natural world is full of self-organized systems of all kinds that exhibit 

long trends of growth and growth rate decline, and which do not become unstable.   What 

would seem suggested, though, is a comparative study of systems that do and do not 

become unstable in the absence of growth, to see what makes them different. 

It is possible that either image would stand out as dominant on further study, though it 

seems more likely that both were operating simultaneously and are each highlighted by 

slightly different adjustments of the lense through which the data is being viewed.    The 

evolutionary view of the data was presented first based on the likelihood that initial 

derivative smoothing more precisely located the true inflection points in the raw data, 
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making it more literally accurate.    It was also presented first because event driven 

hypotheses tend to distract attention from the complex contexts of events that actually 

seem to dominate most processes of self-organization in natural systems.    

More germane to this technical discussion is that these contrasting images point out the 

mathematical sensitivity of the tools used to what you might call focusing.    The 

construction of time-series derivatives and the location of inflection points is useful 

because it distills and magnifies small consistent differences.   Though the present 

method is disciplined and stable, focusing an image is still partly a matter of judgment 

and circumstance.   The most frequently confronted type of problem came from small 

fluctuations in the data at the peak or trough of larger fluctuations.   Because the 

fluctuations are what are used to locate the trend, fluctuations far from the trend can 

confuse the results.   This was confronted in the economic data series during the 30’s and 

40’s where the data contains large irregular disturbances far from the trend.    In this case 

the problem was largely overcome by bridging the fluctuations in two stages.      

The major difference between the results presented in figures 10 and 12 seems to largely 

rest as much on the reduction in the number of inflection points resulting from initial 

smoothing of the data as on changing their precise locations.   A change in the number of 

inflection points in one period can unpredictably alter the sequence of inflection point 

selections in other periods when, as in the presented analysis alternating inflection points 

are connected for the second stage of fluctuation bridging. 

The final picture of the economic data to be offered, figure 13, is of the simple first and 

second differences (∆y/∆t and ∆2y/∆t2 ) of the long periods trend curve.    Reading linear 

time derivatives is significantly different than reading proportional rate derivatives.    

Though time derivatives are more true to absolute scale the shapes of the curves also 

change with the scale of the subject.    Curve group (A) is based on the dr interpolation of 

figure 10 and curve group (B), shown in the background, is based on the dr interpolation 

of figure 12.     

One of the interesting features displayed is the peak of the second derivative in 1960, 

marking the center of a long period of increasing and decreasing absolute acceleration in 

economic production.     This turning point is similar  to the 2nd derivative turning point 

at the middle of a shorter period of increasing and decreasing absolute acceleration 

around  1890  (as shown in the enlargement).   Though the earlier event  looks different 

in context due to the changed scale of the economy since then it appears similar in scale 
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to the economy of its time.    Another interesting feature is a fairly subtle one, that the 

second derivative since 1960 has been steadily decaying toward zero.   Even considering 

only the most reliable portion of the construction, ignoring the most recent 10 years, 

there is a curious strong appearance that expansion of the U.S. economy has been 

steadily approaching a linear rate of expansion.     
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7 .  C o n c l u s i o n  
Time-series measures of change in individual subjects have been assumed to represent 

direct images of unique complex processes which can be studied on multiple scales of 

description.    A presumption of physical continuity has been shown to be an implication 

of the conservation of energy and to imply a necessary dynamic shape and symmetry of 

natural processes which appear to be commonly found in the observation of real events.    

Along with other simple assumptions about a physical system, such as homeostasis, 

logically simple analytical tools have been presented that refine and separate the multiple 

scales of behavior represented.   The recognition that physical continuity from one data 

point to the next implies a constrained hierarchy of accelerations that strongly limit the 

possible paths of development that a subject might have taken, seems to be successful in 

identifying unexpected and useful new questions about underlying behavioral structures. 

The theoretical issues raised and preliminary development of new research 

methodologies are intended to provide a basis for further work.    Hopefully a strong case 

has been made for the usefulness of studying the structures of individual events in 

general, and the analysis of time-series data disciplined by the application of physical 

principles in particular.   The way nature orchestrates complex and well organized 

processes, often without any apparent template to follow, remains a significant puzzle.   

This approach offers new ways of looking for the answers. 

8 .  A c k n o w l e d g m e n t s  
This work represents a considerable investment which would not have been possible 

without the remarkable patience and support of my family.   Special contributions were 

made by my father, who taught me how to think, and the staff and resources of the New 

York public libraries which went a long way to making up for the absence of an 

academic affiliation.    Other special contributions was made by the architects Louis 

Kahn and Buckminster Fuller and the economist Kenneth Boulding, all of whom shared 

their delight in the possible and taught me to look further.   A special thanks goes to Walt 

Cramer who wrote the shareware programming editor on which I developed the 

analytical tools. 
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i  Concerning the  c lose  dynamic re la t ionship between long-term 
growth and unemployment  t rends  p 1 

p 4 i  CFD, Computat ional  Fluid Dynamics  has  been appl ied to  natural  
convect ion problems with  some success  in  var ious  f ie lds  including 
bui lding c l imate  model ing and design.     

i  Appl ied Scient i f ic  Research V51 1993 “Advances  in  Turbulence” 

i i  (Weiner  1949)(Otnes  & Enochson 1972)(Meisel ,  1972)(Chatf ie ld  
1975)(Cuthber t  & Wood 1980)(Harvey,  1981)(Kmenta  1986)(Smith  
1987)(Evans 1988)(Cast i  1989)(Mil ls ;  1990)(Bendat ,  1990)  

p 5 

p 6 i  (Weiner  1949)  p1 ‘Time ser ies  are  sequences . . . s tudied with  respect  
to  the  s ta t is t ics  of  their  dis t r ibut ion in  t ime”  p3 “The events  which actual ly  
happen in  a  s ingle  ins tance are  a lways referred to  as  a  col lect ion of  events  
which might  have happened”   p11 ”Without  a t  leas t  an approximate  
repeatabi l i ty  of  exper iments ,  no comparisons of  resul ts  a t  d i f ferent  t imes are  
possible ,  and there  can be no science.   That  is ,  the  operators  which come into  
considerat ion are  invariant  under  a  shi f t  in  the  origin  of  t ime.”(or iginal  
emphasis)  

i i  (Harré  1972,  p  182)  

i i i  The pract ice  of  represent ing nature as  mathematics  appears  to  have 
or iginated with  Aris tot le ,  who wrote  that  ” i t  i s  manifest  then that  t ime is  a  
number . . . .and is  cont inuous,  for  i t  i s  of  what  is  cont inuous” and “ . . . . I t  i s  
because the  magni tude is  cont inuous that  the  change is  too” Aris tot le’s  
Physics ,  Book IV 220a24 & 219a10 

p 7 i  The posi t ivis t  route  to  val idat ing general izat ions  can not  be  met  for  
cont inui ty.    Cont inui ty is  a  presence of  informat ion about  connect ing 
processes ,  and discont inui ty an absence of  informat ion.   Since a l l  measures  
and observables  begin and end with  an absence of  informat ion nei ther  
cont inui ty nor  discont inui ty of  natural  processes  are  refutable ,  thus  the  
weaker  tes t  of  whether  a  pr inciple  is  useful  i s  adopted here .  

p 8 i  see  (Van Gicch 1978)(Mil ler  1978)(Meadows,  Meadows & Randers  
1992)  

i i  see  (Looss  & Joseph 1980)(Gleick 1987)(Nicol is  & Prigogine 
1989)(Lewin 1992)(Kauffman 1993)  

p 9 i  For  example see  (Mil ler  1967)  pp 114-150 

p 13 i  Note  that  th is  is  a  mixed use of  the  term ‘der ivat ive’  as  def ined in  
the  calculus .    The der ivat ive s t ructure  in  this  case  is  implied by pat terns  that  
appear  in  successive dif ferences  in  a  f ini te  real  valued ser ies .     One might  
prefer  to  reserve the  use  of  the  term der ivat ive  exclusively for  cont inuous 
mathematical  funct ions  ra ther  than al low i ts  use  for  physical  systems and 
f ini te  ser ies  as  wel l .     However ,  the  author  feels  uncomfortable  with  the  
‘dif ferences’  of  a  ser ies  or  only speaking of  the  ‘under lying accelerat ion 
pat terns’  of  natural  systems,  and so ‘der ivat ive’  wi l l  be  used somewhat  
broadly here  to  refer  to  impl ied or  potent ia l ly  constructable  under lying 
cont inui t ies  of  accelerat ion.     As usual  the  terms ‘dif ferencing’   and ‘1s t  and 
2nd dif ferences’  wi l l  be  used when referr ing to  specif ic  ar i thmetical  
operat ions .      The term ‘ integrat ion’ ,  however ,   wi l l  be  used interchangeably 
due to  the  dif f icul ty of  us ing ‘addi t ions’  or  ‘per iodic  summation’  of  a  ser ies ,  
or  other  l ike  terms that  would be more specif ic  to  a  use  with  f ini te  ser ies .  
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i  AutoCAD and AutoLISP are  regis tered t rademarks  of  AutoDESK 
inc.  p 14 

p 22 i  Courant  & Robbins  1978 

p 26 i  (Samuelson & Nordhaus 1985)  Ch 36 Economic Growth Theory and 
Evidence pp793   Referr ing to  graphs of  the  nat ional  product  accounts ,  
“Figure  6-3 is  important .   Linger  over  i t .” .  

i i  see  (Kmenta  1986)  

i i i  see  (Winter  1994)(Meadows et  a l  1972)(Meadows, ,  Meadows & 
Randers  1992)  

iv  (Zel lner  1994)  p218 “Most  ‘one shot’  a t tempts  to  model  th is  
var iable . (GNP).have fa i led. . .many large-scale  model  forecasts  (are)  not  as  
good as  those of  very s imple univar ia te  naive models .”  

v  (Kmenta  1986) ,  pp 207 “In econometr ics  we deal  exclusively with  
s tochast ic  re la t ions” pp 203 “In fact  the  ent i re  body of  economic theory can 
be regarded as  a  col lect ion of  re la t ions  among var iables . . (as  def ined) . .by a  
given equat ion” 

p 27 i  (Samuelson & Nordhaus 1985)  pp 799 “the rapid growth in  output  
per  worker  came to  an abrupt  hal t  in  1973” “af ter  growing at  2  1/2% annual ly 
f rom 1948 to  1973,  labor  product ivi ty  grew at  the  much s lower  pace of  1/2% 
annual ly f rom 1973 to  1984” 

i i  Nat ional  Income & Product  Accounts    Bureau of  Economic 
Analysis ,  U.S.  Dept .  of  Commerce   NIPA 1869-1970 Gross  Nat ional  
Product  in  1958 Dol lars  Ser ies  F 1-5   in i t ia l  f igure  for  1869-79 t reated as  an 
average centered on in  1874;  NIPA 1929-1982 Gross  Nat ional  Product  in  
1982 Dol lars  Table  1 .2  (adjusted to  1958 $) ;   NIPA 1929-1988 Gross  
Domest ic  Product  in  1987 Dollars ;   

i i i  World  Almanac 1994;  source for  Bureau of  Economic Analyses ,  
U.S.  Dept .  of  Commerce;NIPA 1990-1993 Gross  Domest ic  Product  p104 
(adjusted to  1958 $)  

 

A p p e n d i x  A .  

R E F E R E N C E  T O  A N A L Y T I C A L  S O F T W A R E  
 
The computer  tools  descr ibed below are  organized as  a  col lect ion given the 
name of  Curve ,  which includes  a l l  those used for  the  t ime-ser ies  data  analysis  
presented a long with  some drawing and graphic  ut i l i t ies  and templates .    
They were  developed in  the  AutoLISPi  programming language for  use  wi th  
AutoCAD i running on DOS or  Windows computers .     AutoCAD is  a  general  
graphical  database product  used extensively in  archi tecture  and engineer ing 
design,  mapping and control  appl icat ions .     The Curve analysis  col lect ion 
operates  only in  an AutoCAD environment  and is  not  di rect ly  t ransferable  to  
other  pla t forms.    Any graphing or  database sof tware with  a  reasonable  

                                                                 
iAutoCAD and AutoLISP are registered trade names of AutoDesk Inc. 
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customizat ion capabi l i ty  could be used to  develop s imilar  tools  fol lowing the 
basic  pr inciples  out l ined here .     

Correspondence :    
Phi l ip  F.  Henshaw,  Compuserve 76520,1532,  te l  (212)749-8983 

Queries :  Quest ions  f rom researchers  and developers  seeking help  with  
programming and analysis  problems are  welcome.    Copies  of  the  sof tware  are  
avai lable  for  research use .  

Data :  Interes t ing data   for  exper imental  analysis  would be very welcome.     
Any wel l  documented t ime ser ies  suspected of  having under lying s t ructure  
would be of  in teres t .     Ideal  data  sets  would cover  the  ent i re  his tory of  some 
subject  event  f rom before  i ts  beginning to  af ter  i t s  end.     Data  in  comma 
separated ASCII  text  f ie ld  format  with  t i t le  and comment  heading l ines ,  
column headings  and opt ional  end f ie ld  notes  for  individual  data  points  
would be preferred.  

8.1.1 ‘CURVE’ Programming Notes/Command List 

1)  Command Operation 

•  Once the funct ions  are  loaded,  the  basic  user  operat ion sequence is  
to  enter  an analyt ic  funct ion name,  se lect  data  graphs on the  
screen to  operate  on and then choose f rom var ious  opt ions .     The 
programs then inspect  the  data  and the  a t tached his tory of  pr ior  
operat ions  and then scan and interpret  the  point  values .    Final ly,  
when the analysis  is  complete  the  resul ts  are  plot ted and the 
command name and opt ions  used are  added to  the  operat ions  
his tory.     Some funct ions  scan forward only and others  both  
forward and back,  us ing 2 ,  3 ,   5   or  more points  in  the  analyt ical  
point  bracket ,  and may perform s ingle  or  mult iple  i terat ions .      

2)  Presentat ion of  Results  

•  Every analyt ic  funct ion creates  a  new graph,  as  every operat ion on 
a  mathematical  equat ion creates  a  new formula .     When several  
s teps  are  taken to  produce a  desired resul t  the  intermediates  are  
typical ly hidden or  discarded unless  they present  useful  visual  
informat ion.    

•  Because the  scale  of  der ivat ives  and integrals  is  of ten qui te  
di f ferent  f rom that  of  the  or iginal  data ,  der ivat ives  are  sometimes 
automatical ly  rescaled with  a  peak value of  4/5  of  the  peak value 
of  the  or iginal  and integrals  a t  5 /4  of  the  or iginal .    When a  
comparison of  di f ferent  data  se ts  or  methods of  analysis  is  desi red,  
a  f ixed scal ing factor  is  se lected so that  the  resul ts  have matched 
presentat ion scales .     

3)  Major Functions 

•  Derivat ive  Interpolat ion -  DIN locates  a  new point  in  the  middle  of  
a  four  point  bracket  that  makes the  thi rd  der ivat ives  on ei ther  s ide  
equal ,  us ing sub-funct ion (F_3SYM).   This  creates  a  curve,  
including the  or iginal  data  points ,  which has  greater  cont inui ty 
than the  or iginal  and approximates  a  curve with  the minimum scale  
and reversals  of  under lying accelerat ion necessary for  a  
cont inuous path  between the  given points .  
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•  Trend Line Bridging -  TLIN- draws a  graph between local  
inf lect ion points  as  def ined by reversals  in  the  s ign of  the  second 
der ivat ive .   This  corresponds to  the  pr inciple  that  f luctuat ions  
about  a  t rend wil l  cross  the  t rend l ine  with  a  maximum slope and 
have a  s lope equal  to  that  of  the  t rend when at  a  maximum dis tance 
f rom i t .    This  is  commonly the  case  for  homeostat ic  processes .     .  

Opt ions  are  provided to  select  every,  a l ternat ing inf lect ion points  
or  to  prompt  inf lect ion points  for  individual  user  se lect ion,  and to  
set  a  maximum length of  f luctuat ion to  recognize.      

 The best  large scale  t rend resul ts  took several  s teps .    Firs t  
in terpolat ion and der ivat ive smoothing were  done and then the  
shor t  per iod f luctuat ions  f i l tered out .   After  addi t ional  
der ivat ive  smoothing the  long per iod f luctuat ions  could be 
ident i f ied and br idged.  

 I f  the  las t  inf lect ion point  was c lose  to  the  end of  the  data  the  
end point  was placed according to  a  weighted project ion f rom 
the preceding t rend thi rd  der ivat ive  using (FF_TENDS).    This  
substant ia l ly  reduced endpoint  dis tor t ions .  

 Each l ine  segment  of  a  t rend br idge graph has  a  separate  point  
on the  br idge l ine  for  each or iginal  data  point  dur ing the  
per iod.    When br idge lengths  were  large the  number  of  points  
was reduced before  der ivat ive  smoothing using (GPAR).    This  
is  required to  maintain  a  regular  f requency of  points  and then 
to  e l iminate  long per iods  of  fa lse  constant  s lope which 
der ivat ive  smoothing would only re inforce .  (See Figure  A1)  

•  Double Derivat ive  Smoothing -  The object ive  of  der ivat ive  
smoothing is  to  reduce the  number  and scale  of  under lying 
der ivat ives  whi le  leaving the integral  of  the  curve unchanged.    
DDSM  combines  s imul taneous forward and backward scans  
adjust ing the  middle  point  of  a  5  point  bracket  us ing thi rd  
der ivat ive  smoothing (F_3SYM),  or  a  3  point  bracket  us ing 1st  
der ivat ive smoothing,  to  equal ize  the  ra tes  of  change on ei ther  
s ide  of  the  center  point .    Sometimes referred to  as  curve f i t t ing,  
ra ther  than smoothing,  the  rout ine does  s l ight ly  effect  local  
maxima and minima but  has  rapidly decl ining effect  on repeated 
i tera t ion.    I t  provides  s t rong local  smoothing but  has  l i t t le  effect  
on overal l  curve shape or  t iming.(see  Figure  A.2)  
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•  Graphic  Function Calculator -The GCAL  funct ion wil l  perform 
calculat ions  using the  names of  graphs and user  se lected points  
and dis tances  as  var iables  in  equat ions  wri t ten as  text  wi th  a  
general  se t  of  mathematical  funct ions .    One curve is  used for  the  
t ime value set  and the implied scale  of  the  other  curves  a t  those 
points  is  used in  the  calculat ion.   The funct ion used can be read 
from and to  selected l ines  of  text  and is  recorded with  the  
resul tant  curve as  par t  of  i t s  operat ion his tory record .    Graph 
var iable  names are  ident i f ied by s tar t ing with  a  double  le t ter  ( i .e .  
GG1,  e tc . )  and points  var iable  names by s tar t ing with  ‘pt’  ( i .e .  
PT1,  e tc . ) .   Other  preset  AutoLISP var iables  may also be used by 
name.     This  ut i l i ty  can be used to  produce funct ion graphs such 
as  exponent ia ls  or  log plots  of  data .    I ts  pr imary intended use is  
for  applying theoret ical  re la t ions  between dynamic measures ,  such 
as  to  examine energy f low and temperature  re la t ions ,  e tc .  

4)  Subfunctions 

•  3rd Derivat ive  Smoothing (F_3SYM)  -   adjusts  the  scale  of  the  
midpoint  of  a  f ive  point  sequence. .     The calculat ion shown here   
assumes equal  t ime per iods .   In  the  program the resul t  i s  then 
adjusted for  unequal  per iods .     The equat ion yie lds  the  ∆y (∆Yi)  
for  the  middle  point  that  wi l l  make the  3rd der ivat ive  in  the  f i rs t  
three  per iods  equal  to  that  in  the  las t  three  per iods  :  

 (∆ ∆ ∆
∆

∆

∆

∆
∆ ∆y y y

y

x

y

x
x xi = + − −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ − )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1

2

1

61 2
3

3

0

0
1 2  A.1 

           Algor i thm for  3rd Derivat ive  Smoothing  
( refer  to  point  and ra t io  naming convent ion in  f igure  A3)  

 Point  var iables  in  the  sequence are  labeled f rom 0 to  4  and 
dif ferences  f rom 0 to  3 .    The rout ine a lso makes correct ions  a t  
points  where  new second der ivat ive  reversals  would be int roduced 
and at  the  mid-points  of  double  reversal  per iods  which produce 
inconsis tent  s ign and magni tude errors .  

•  (F_DOGRAF )  The Simpler  graphing funct ions  were  wri t ten to  
record resul ts  as  each successive point  is  read and interpreted 
according to  a  rule  fed to  this  graph drawing sub-funct ion.  

•  (F_DXYVAR )  and (F_LISTVARS )  The more complex funct ions  
maintain  numbered var iable  names for  each place in  the  bracket  
being considered with  data  values  successively moved from one 
place to  the  next  as  the  curve is  scanned.  

•  (FF_TENDS )  Star t  and end points  of  a  ser ies  are  sometimes 
re ta ined unchanged from the or iginal  curve and sometimes 
projected according to  a  damped f irs t ,  second,  or  th i rd  der ivat ive  
impl ied by preceding or  fol lowing points . .  

5)  Basic  Operations 

•  Importing Data Fi les  -  GRFIL  imports  comma separated two 
column text  data  a long with  t i t le,  headings ,  scal ing factors  and 
notes .  
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•  Derivat ive  -  DIF   p lots  the  ra t io  of  ∆y/∆ t  wi th  the  s tar t ing point  
ass igned a  value equal  to  the  average of  the  second and thi rd .     
The proport ional  di f ference,  or  growth ra te ,  opt ion provided is   
∆y/y.   The auto-scal ing opt ion sets  the  peak value of  the  der ivat ive 
to  4/5  that  of  source.    

•  Integral  -  INT   p lots  Σ∆y*∆ t  the  area  under  the  curve of  each 
per iod with  the  s tar t ing point  se t  a t  a  user  picked or  entered value.     
The auto-scal ing opt ion sets  the  peak a t  5 /4  of  that  of  source.  

•  Graph Scal ing -  GSC  scales  a  graph,  in  proport ion to  the  ra t io  of  
one dis tance to  another  

•  Increasing Point  Frequency -  GSEG  ( l inear  interpolat ion)  inser ts  
a  var iable  number  of  points  equal ly  spaced on a  s t ra ight  l ine  
between exis t ing points .   Used to increase the  point  densi ty of  a  
data  set . .  

•  Reducing Point  Frequency -  GPAR    Creates  a  subset  par t i t ion of  
the  data  set  by skipping points  in  a  given range or  replacing a  
range of  points  wi th  an average.    Used to  reduce the  point  densi ty 
of  a  data  set .    This  was pr imari ly  appl ied to  a  TLIN curve to  
create  an equal ly  spaced point  set  that  could be effect ively 
smoothed by DDSM. 

•  Average -  ASM  averages  a  var iable  bracket  of  points ,  wi th  each 
point  given equal  weight  or  a  weight  in  proport ion to  i t s  posi t ion 
in  the  point  bracket .  

•  Symmetric  Double  Average -  DASM  i s  the  same as  ASM,  but  
scans  both forward and back and averages  the  resul ts  to  reduce 
direct ional  bias .  

•  Derivat ive  Smoothing -  DSM  wi th  1st  or  3rd der ivat ive  symmetry 
with  a  var iable  number  of  i tera t ions .   Same as  DDSM but  wi thout  
combining s imul taneous forward and backward scans .  

6)  Other Functions 

•  Trend Separation -  TSEP    i s  a  special  appl icat ion tool  that  
separates  t rend per iods  in  a  data  sequence and inser ts  constant  
per iods  a t  maxima,  minima and axis  cross ing points .    This  is  done 
e i ther  by s imply adding new points  between the developmental  
t rend per iods  ( increasing the  range) ,  or  wi th  l inear  compression of  
the  t rend per iod so the  range of  the  data  is  the  same as  the  
or iginal .  

•  Step Curves  -  GSTEP  creates  a  s tep curve passing through the 
points  of  any graph.    I t  i s  pr imari ly a  graphic  tool .  

•  Graph Recording -  GREC  records  the  accelerat ions  of  the  screen 
pointer  for  one movement  of  the  digi t izer  and scales  the  point  se t  
to  f i t  a  pre-def ined window.  

PCON-draft B 39 ©PFH 6:01 PM 



Appendix B.    
R E L A T E D  W O R K  I N  E C O N O M I C S  

 

8.1.2 Econometric Time-series  Modeling 

The convent ional  mathematical  model  for  a  t ime-ser ies  in  economics  is  a  
s imple  polynomial  equat ion adjusted to  f i t  the  data  using least  squares  
regress ion,  combined with  a  s ta t is t ical  component .    The re la t ive  dif f icul ty of  
obtaining success  in  making predict ions  or def ining a  theoret ical  basis  for  the  
equat ions  is  responded to  in  three  basic  ways.    There  are  s imple  
mathematical  models  accepted because they are  easi ly  made and unders tood,  
complex and mathematical ly sophist icated models  that  offer  some 
improvement  in  resul ts  but  add a  burden of  complexi ty,  and mixed methods 
that  p ick up whatever  seems useful .    In teres t ing current  discussion of  these  
general  approaches  is  found in  the  papers  by Tiao & Tsay (1994) ,  Young 
(1994) ,  Zel lner  (1994)and Peña (1995)  in  the  Journal  of  Forecast ing and 
elsewhere.  

The most  common of  the  pract ical  methods is  the  ARIMA model ,  s tanding for  
Auto-Regress ive Integrated Moving Average (see  Chatf ie ld  (1975)  and 
Harvey (1981)(1993) .     Fol lowing this  method known t rends  are  f i rs t  
removed from the data ,  then the  successive dif ferences  between points  are  
taken (giving der ivat ive  curves)  unt i l  the  resul t  seems completely  random.  
Then a  s t ra ight  l ine  is  f i t ted to  the  random data ,  re integrated and combined 
with a  s ta t is t ical  var iance to  make a  s tochast ic  funct ion to  represent  the  
behavior  of  the  system.     Peña (1995)  notes  that  one reason that  twice 
dif ferenced and re integrated models  have bet ter  shor t  term predict ive  resul ts  
is  that  the  procedure gives  the  greates t  weight  to  the  value of  the  most  recent  
data  point ,  where  fewer  integrat ions  have the  effect  of  giving greater  weight  
to  pr ior  data  points .    Zel lner  (1994)  takes  a  somewhat  arbi t rary but  pract ical  
approach by taking a  less  than perfect  ARIMA and mixing in  factors  f rom the 
index of  leading indicators .    This remains  s imple  enough to  unders tand and 
is  s ignif icant ly bet ter  in  making predict ions .    Tiao and Tsay (1994)  
demonstra te  that  the  performance of  forecast ing models  depends par t ly  on 
whether  the  number  of  t ime per iods  ahead for  which they were  opt imized is  
the  same as  t ime per iod ahead they are  used to  forecast .  

The sophis t icated methods s tar t  f rom this  approach and add var ia t ions  such as  
piecewise opt imizat ion,  s ta t is t ical  and f requency f i l ter ing and Fourier  and 
Hamil tonian funct ion analysis .    Tiao and Tsay (1994)  propose a  method of  
construct ing a  piecewise l inear  autoregression that  is  piecewise in  the  space 
of  a  threshold var iable  so that  the  regress ion groups the  expansion and 
contract ion per iods  for  separate  opt imizat ion and then recombinat ion.    Also 
demonstra ted is  the  use  of  Bayesian inference with  Gibbs sampling for  to  
f i l ter  out  of  the  data  s ta t is t ical ly  a typical  values .     Young (1994)  tackles  the  
problem of  s ta t is t ical  non-uniformity in  the  data  using t ime var iable  
parameters  found by recurs ive es t imat ion based on the  f requency dis t r ibut ion 
of  the  s ta t is t ical  res iduals .    The method is  qui te  di f f icul t  to  unders tand but  
produces  cont inuous descr ipt ive  resul tant  curves  displaying a  remarkable  
level  of  dynamic detai l .  
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8.1.3 Economic Factor Theory Models 

The models  based on economic factor  theory,  the  theoret ical  s t ructural  
re la t ionships  between technology,  educat ion,  money,  populat ion,  resources  
and publ ic  pol icy,  e tc . ,  are  a lso very act ively  pursued.     One of  area  of  
s t rong new interes t  i s  endogenous growth theory,  in  which models  are  
constructed using feedback,  a  s t ructural ly dif ferent  kind of  mathematics  than 
the  f i t t ing of  polynomials  as  in  convent ional  pract ice .    This  is  the  same 
s t ructural  d i f ference between the formulas  of  c lass ical  physics  and the 
models  of  physical  systems being developed in  the  s tudy of  physical  system 
dynamics  known as  chaos  or  bi furcat ion theory.     

In  endogenous growth theory one of  the  in teres t ing ideas  is  that  growth ra tes  
might  increase  with  increasing populat ion,  ra ther  than decl ine .    Having more 
people  avai lable  to  invent  things  that  everyone can take advantage of  might  
explain  why the large societ ies  in  his tory have had higher  ra tes  of  growth 
(Kremer  1993)(Schuls tad 1993) .    In  economic theory this  new approach 
marks  the  s ignif icant  s tep toward abandoning the  concept  of  perfect  
compet i t ion as  discussed by Romer (1994) ,  Grossman & Helpman (1994) ,  
Solo (1994,)  and Pack (1994) .    Fol lowing this  path  the  interes t  i s  to  provide 
compel l ing reasoning to  guide theory,  pol icy and business  pract ice .    The 
construct ion of  behavioral  models  f rom factor  theory equat ions  that  f i t  or  
predict  the  data  wel l  i s  current ly  out  of  reach.  

8.1.4 The large institutional models such as the Kent model and othersi used by governments 
and universities may incorporate thousands of separate time-series related according to a 
combination of empirical and structural factor theory equations.   Most are optimized to 
provide one, two and three quarter business projections.   There may be many kinds of 
innovative experiments in modeling taking place in these circles.    There are also large scale 
resource models, as opposed to business models, used by the UN and others.   One of some 
note that is compelling but has been treated as requiring too many assumptions is the limits 
to growth study originally commissioned by the Club of Rome (Meadows 1972, 1992).    This 
work is quite out of character with the majority of economic modeling efforts in that it is a 
serious effort to project the behavior of the world economy as a life support mechanism for a 
century into the future. 

8.1.5 A Comparison of Results:  
Reconstruction of Physical Continuity  & Time Variable Parameter modeling 

The reason for  th is  sect ion is  a  remarkable  s imilar i ty  between the resul ts  
obtained for  the  same data  with  der ivat ive reconstruct ion (DR) and the t ime 
var iable  parameter  (TVP) method of  Young (1994) .    The s ignif icant  f inding 
is  that  the  two dis t inct ly dif ferent  methods both demonstra te  ra ther  c lear ly 
that  there  is  another  level  of  s t ructural  informat ion in  t ime-ser ies  data  that  
has  not  been made vis ible  by other  methods.    I t  a lso  serves  to  confi rm the 
val idi ty  of  each method of  exposing i t .    

Figure  B1 shows the DR interpolat ion and 1st  d i f ferencing of  loge(GNP) and 
log e(UN) for  the  same data  used by Young.    The der ivat ive  t rends  of  the  
s tock market  were  a lso calculated and are  presented for  comparison.  

                                                                 
iSee Journal of Business Forecasting Methods & Systems and Journal of Monetary Forecasts
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Figure  B2 shows the 2nd der ivat ive  of  these  var iables  presented in  the  same 
manner  as  Young’s  resul ts ,  shown below in  Figure  JOF-11.  for  the  2nd 
dif ferences  the  f i l tered t rend GNP and Unemp.     

The remarkable  feature  of  both is  an apparent  t ight  symmetr ic  synchrony 
between the underlying accelerat ions  in  GNP and Unemployment  ra tes ,  
despi te  the  appearance that  the  or iginal  measures  descr ibe ent i re ly  dif ferent  
k inds  of  behavior .     

1)  The data used  

•  Young used 160 quar ters  of  US GNP,  Unemployment  ra tes  and 
other  aggregates  cover ing 1948(1)  to  1988(4)  ( f igure  JOF-1.  And 
JOF-4) i.     

•  For der ivat ive  reconstruct ion these  char ts  were  digi ta l ly  scanned 
and conver ted f rom TIF to  DXF vector  graphic  f i les .    The 
vector ized scans  were then corrected by hand to  jo in  broken 
segments  and t r im out  spur ious  ver t ical  segments  to  make them 
sui table  for  der ivat ive reconstruct ion using the  funct ions  of  
CURVE .  

2)  Analysis  Method  

•  Young’s  method uses  a  recurs ive spectra l  densi ty  f i l ter  cal led 
IRWSMOOTH to produce a  t ime-ser ies  t rend.    I t  i s  based on the  
unobserved component  models  ( referred to  Harr ison and Stevens 
1971 & 1976;  Ki tagawa 1981;  and Harvey 1984)  in  which the  
parameter  var ia t ions  are  descr ibed by a  higher-dimensional ,  vector  
random-walk- type model .    Though the detai ls  of  i t s  construct ion 
are  not  presented,  and i ts  appl icat ion qui te  complex,  one 
ment ioned feature  that  might  cause i t  to  have resul ts  s imilar  to  DR 
is  the  reported s imilar i ty  of  the  s ta te-space a lgor i thms used to  the  
opt imizat ion technique known as  regularizat ion which includes  
constra ints  on the  ra tes  of  change of  the  var iables(see  Young 1994 
p.  181) .     The IRWSMOOTH trend ser ies  was then dif ferenced 
twice to  produce f igure  JOF-11.  

•  In  this  appl icat ion the  der ivat ive reconstruct ion s teps  were 
or iented to  examining more detai led f luctuat ions  than those used 
for  the  analysis  of  the  ent i re  his tory of  GNP presented in  the  
preceding paper .    The s teps  began with  der ivat ive  interpolat ion 
(din)  to  re inforce the  shor t  term events .    Then near ly  ident ical  
s tages  of  der ivat ive  smoothing,  inf lect ion point  br idging and 
fur ther  der ivat ive  smoothing were  appl ied to  each curve.     The 
two levels  of  t rend br idging for  the  unemployment  f igures  are  
c lear ly  vis ible  in  f igure  B1.    The larger  scale  t rends were then 
dif ferenced to  produce the  neat  mirror  symmetry of  f luctuat ing 
f i rs t  der ivat ive  ra tes  of  the  DR trend levels  of  GNP and 
Unemployment .     A second dif ferencing and scale  adjustment  
produced Figure  B2.  

3)  Discussion  

                                                                 
iFigures reproduced from Journal of Forecasting for research only 
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•  The quest ion,  of  course ,  i s  whether  th is  kind of  remarkable  pat tern  
is  real .    I t  seems to  have been hard for  Young’s  readers  to  accept  
i t .    Young provides  a  careful  response to  the  quest ion of  the  
re la t ionship being jus t  an art i fact  of  his  unusual  spectra l  
f requency f i l ter .     He also points  out  that  there  is  “more than just  
a  s imilar  f requency content  in  the  ser ies :  even subt le  temporal  
var ia t ion in  the  cycles  can be discerned in  both ser ies .   Moreover ,  
s imilar  f i l ter ing operat ions  appl ied to some of  the  other  ser ies  ( in  
f igure  JOF-4)  do not  reveal  near ly so c lear  re la t ionships” (Young 
1994 p  203) .  

•  One addi t ional  aspect  of  the  pat tern of  c lose  synchrony between 
under lying turning points  that  seems par t icular ly convincing 
concerns  an implicat ion about  the  general  system st ructure  of  the  
economy.     Nei ther  GNP nor  unemployment  are  leading factors ,  
but  turn s imultaneously.    This  seems to  be possible  only for  
measures  of  a  system that  acts  as  a  uniform whole .    I f  e i ther  one 
were the  consequence of  the  other  then a  consis tent  t ime lag 
should be evident .    Thus the  synchrony of  the  turning points  
suggests  that  the  two factors  are  not  causal ly re la ted,  but  are  both 
indicators  of  the  same dynamic of  the  whole  system.  

•  The DR stock market  t rend der ivat ive  shown in  f igure  B1 bears  
some s imilar i ty  to  the  GNP movements ,  but  sometimes leads  and 
sometimes fol lows,  in  an i r regular  fashion.    I t  therefore  appears  
to  be only loosely t ied to  the  under lying fundamental  dynamic of  
the  system as  a  whole .    This  is  jus t  what  one might  expect  
consider ing the  s t rong inf luence of  volat i le  and sel f  ful f i l l ing 
investor  expectat ions  in  set t ing the  direct ions  of  the  market .  

•  All  in  a l l ,  what  seems demonstrated are  two lenses  with  s l ight ly  
dif ferent  focus  and lense dis tor t ions ,  providing c lear  views of  the  
same surpr is ingly systemat ic  behavior .  
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